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Abstract. We prove the collinear factorization theorem for the process πγ∗ → π at the twist-3 level in the
covariant gauge by means of the Ward identity, concentrating on the two-parton case. It is shown that
soft divergences cancel and collinear divergences are grouped into the pseudo-scalar and pseudo-tensor
two-parton twist-3 pion distribution amplitudes. The delicate summation of a complete set of diagrams for
achieving factorization in momentum, spin, and color spaces is emphasized. The proof is then extended
to the exclusive semileptonic decay B → πlν, assuming the hard scale to be of O

(√
Λ̄MB

)
, where Λ̄

is a hadronic scale and MB the B meson mass. We explain the distinction between the factorization of
collinear divergences for a pion distribution amplitude and of soft divergences for a B meson distribution
amplitude. The gauge invariance and universality of the two-parton twist-3 pion distribution amplitudes
are confirmed. The proof presented here can accommodate the leading twist-2 case. We then compare our
proof with that performed in the framework of soft-collinear effective theory.

PACS. 12.38.Bx

1 Introduction

Recently, we have proposed a simple proof of the collinear
factorization theorem in perturbative QCD (PQCD) for the
exclusive processes πγ∗ → γ(π) and B → γ(π)lν̄ based on
the Ward identity [1]. According to this theorem [2–6],
hadronic form factors are factorized into the convolution
of hard amplitudes with hadron distribution amplitudes
in momentum, spin, and color spaces. The former, being
infrared finite, are calculable in perturbation theory. The
latter, absorbing the infrared divergences involved in the
processes, are defined as matrix elements of non-local oper-
ators. The universality of the distribution amplitudes and
the gauge invariance of the factorization have been ex-
plicitly demonstrated. Our proof can be compared to that
performed in the axial gauge [2], in which the factorization
of infrared divergences is trivial, but the gauge invariance
is not obvious. The formalism in [1] is restricted to the
leading-twist, i.e., twist-2 level. As emphasized in [7, 8],
contributions from the two-parton twist-3 pion distribu-
tion amplitudes are not only chirally enhanced, but are of
the same power as the leading-twist one in the semilep-
tonic decay B → πlν. Hence, it is necessary to derive the
corresponding factorization theorem. This proof can be re-
garded as an essential step toward a rigorous construction
of the factorization theorem for two-body non-leptonic B
meson decays.

a e-mail: makiko@phys.ntu.edu.tw

The general decompositions of the matrix elements rele-
vant to the two-parton pion distribution amplitudes are [9]

〈0|d̄(y)γµγ5u(0)|π+(P )〉

= ifπPµ

∫ 1

0
dxe−ixP ·yφP (x)

+
i
2

fπM2
π

yµ

P · y

∫ 1

0
dxe−ixP ·ygπ(x) , (1)

〈0|d̄(y)γ5u(0)|π+(P )〉

= −ifπm0

∫ 1

0
dxe−ixP ·yφS(x) , (2)

〈0|d̄(y)γ5σµνu(0)|π+(P )〉 = − i
6

fπm0 (3)

×
(

1 − M2
π

m2
0

)
(Pµyν − Pνyµ)

∫ 1

0
dxe−ixP ·yφσ(x) ,

where φP,S,σ and gπ are the distribution amplitudes of unit
normalization, fπ the pion decay constant, Mπ the pion
mass, x the momentum fraction associated with the d̄ quark
evaluated at the coordinate y. The Wilson links that render
the above non-local matrix elements gauge invariant are not
shown explicitly. It is easy to observe that the contribution
from φP , independent of the pion mass, is twist-2, and the
contribution from gπ is twist-4 because of the factor M2

π .
The contributions from the pseudo-scalar (PS) distribution
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amplitude φS and from the pseudo-tensor (PT) distribution
amplitude φσ, proportional to the chiral enhancing scale
m0, are twist-3.

We concentrate on the factorization of the two-parton
twist-3 distribution amplitudes φS and φσ from the pro-
cesses πγ∗ → π and B → πlν. We shall not consider the
three-parton twist-3 distribution amplitudes here, since
their contributions to exclusive processes are suppressed
by the strong coupling constant and of higher power. The
reason is as follows: after factorizing the corresponding in-
frared divergences to all orders, the contribution is written
as a convolution of a hard amplitude with the three-parton
twist-3 distribution amplitudes. The hard amplitude con-
tains one more attachment from the extra parton (gluon)
compared to that in the two-parton case. The attachment
introduces one more power of the coupling constant, and
one more hard propagator proportional to 1/Q, where Q
is a large scale characterizing the hard amplitude. Hence,
a three-parton hard amplitude is at least down by a power
of the coupling constant and a power of 1/Q compared to
the leading-order leading-twist hard amplitude. Moreover,
the three-parton twist-3 distribution amplitudes should be
considered along with the two-parton kT distribution am-
plitudes, which form a complete gauge-invariant set.

Non-perturbative dynamics is reflected by infrared di-
vergences of radiative corrections in perturbation theory.
There are two types of infrared divergences, soft and col-
linear. Soft divergences come from the region of a loop
momentum l, where all its components diminish. Collinear
divergences are associated with a massless quark of momen-
tum P ∼ (Q, 0, 0T). In the soft region and in the collinear
region with l parallel to P , the components of l behave like

lµ = (l+, l−, lT) ∼ (λ, λ, λ) , lµ ∼ (Q, λ2/Q, λ) , (4)

respectively, where the light-cone coordinates have been
adopted, and λ is a small hadronic scale. In both regions
the invariant mass of the radiated gluon diminishes as
λ2, and the corresponding loop integrand may diverge as
1/λ4. As the phase space for loop integration vanishes like
d4l ∼ λ4, logarithmic divergences are generated.

In this paper we shall derive the collinear factoriza-
tion formula for the scattering process πγ∗ → π, which
involves the pion form factor, at twist-3 by means of the
Ward identity. The chirally enhanced contributions to the
pion form factor have been calculated in [10] without prov-
ing their factorization theorem. It will be shown that soft
divergences cancel and collinear divergences, factored out
of the processes order by order, are absorbed into the two-
parton twist-3 pion distribution amplitudes defined by the
non-local matrix elements,

φS(x)

= i
P+

m0

∫
dy−

2π
eixP+y−〈0|d̄(y−)γ5

× Wn−(y−)u(0)|π+(P )〉,
φT(x)

≡ 1
6

d
dx

φσ(x)

= i
P+

m0

∫
dy−

2π
eixP+y−〈0|d̄(y−)γ5(�n+ �n− − 1)

× Wn−(y−)u(0)|π+(P )〉 , (5)

where n+ = (1, 0, 0T) and n− = (0, 1, 0T) are dimensionless
vectors on the light cone, Wn−(y−) the Wilson line integral,

Wn−(y−) = P exp

[
−ig

∫ y−

0
dzn− · A(zn−)

]
, (6)

with the symbol P standing for the path ordering, and the
pion decay constant fπ has been omitted. The definition of
the hard amplitudes at each order will be given as a result
of the proof.

We then prove the collinear factorization theorem for
the semileptonic decay B → πlν, whose topology is similar
to the scattering process πγ∗ → π. In the heavy quark
limit the mass difference between the B meson and the b
quark, Λ̄ = MB − mb, represents a small scale. Assuming
the hard scale to be of O(

√
Λ̄MB), the soft divergences

do not cancel on the B meson side, and the B meson
distribution amplitudes are introduced to absorb the soft
divergences. The distinction between the factorization of
soft divergences for the B meson distribution amplitudes
and the factorization of collinear divergences for the pion
distribution amplitudes will be explained. It will be shown
that the two-parton twist-3 pion distribution amplitudes
derived from the scattering πγ∗ → π and from the decay
B → πlν̄ are identical as defined by (5). That is, the
universality of hadron distribution amplitudes is confirmed.

There are different opinions on whether the transverse
degrees of freedom of partons should be involved in ex-
clusive B meson decays [11–13]. The conclusion drawn
in [12,13] that the parton transverse momenta kT are not
necessary is based on the analysis of the B → γlν decay, for
which the collinear factorization formula does not develop
an end-point singularity. When end-point singularities ap-
pear [14–16], for example, in the collinear factorization for-
mulas of semileptonic and non-leptonic decays, the region
with a small momentum fraction x becomes important. In
this end-point region the parton kT should be taken into
account, and the kT factorization theorem [17,18] is more
appropriate. Here we shall derive the collinear factorization
formalism for exclusive B meson decays. The kT depen-
dence can be introduced straightforwardly following the
procedure in [19].

We emphasize that the proof of the factorization the-
orem is not the whole story of PQCD. The double log-
arithms αs ln2 x appearing in higher-order corrections to
exclusiveB mesondecayshavebeenobserved [11,12,20–22].
When the end-point region is important, αs ln2 x cannot
be treated as a small expansion parameter, and should be
summed to all orders. A systematic treatment of these log-
arithms has been proposed by grouping them into a quark
jet function [23], whose dependence on x is governed by
an evolution equation [21]. A Sudakov factor, obtained by
solving the evolution equation, decreases fast at the end
point. Moreover, if the kT factorization theorem is adopted,
kT resummation is also required, which leads to another



Makiko Nagashima, Hsiang-nan Li: Two-parton twist-3 factorization in perturbative QCD 397

Sudakov factor describing the parton distribution in kT.
Therefore, in a self-consistent analysis the original factor-
ization formulas should be convoluted with the above two
Sudakov factors. It turns out that the end-point singular-
ities do not exist [24], and an arbitrary infrared cut-off for
the momentum fraction x [14, 25] is not required.

In the framework of soft-collinear effective theory
(SCET) [26,27], an effective Lagrangian with high-energy
modes integrated out has been constructed. This SCET
Lagrangian provides a simple guideline for deriving a fac-
torization formula by counting the powers of effective op-
erators: start with an effective operator relevant for a high-
energy QCD process, and draw the diagrams based on the
SCET Lagrangians. Those effective diagrams, whose con-
tributions scale like the power the same as of the operator,
contribute to the matrix element formed by the operator.
This matrix element is identified as the non-perturbative
distribution amplitude, which collects the infrared diver-
gences in the process. The Wilson coefficient (the hard
amplitude) associated with the considered operator is then
obtained by subtracting the effective diagrams from the full
diagrams (the matching between the full theory and the
effective theory). An example for the application of SCET,
the collinear factorization of the B → Dπ decays, can be
found in [28]. We shall compare the above formalism with
ours at the end of this paper. For a detailed comparison,
refer to [29].

We mention the opinion from the QCD-improved fac-
torization (QCDF) [25], which claims that the B → π form
factor, suffering the end-point singularity in collinear fac-
torization, is dominated by soft dynamics. For a debate on
this issue, refer to [13,30]. We have explained that the op-
posite conclusions on the dominant dynamics in exclusive
B meson decays are attributed to the different theoreti-
cal frameworks [31]: a transition form factor is factoriz-
able in PQCD, i.e., in kT factorization as explained above,
not factorizable in QCDF, i.e., in collinear factorization
(speaking of only the leading contribution) [25], and par-
tially factorizable in SCET [32] (non-singular and singular
pieces in collinear factorization are written into factor-
izable and non-factorizable forms, respectively). There is
no conflict at all among these observations. It has been
pointed out that the collinear factorization and the kT fac-
torization lead to different phenomenological predictions
for non-leptonic B meson decays, such as the CP asym-
metries in the B → π+π− modes [19,33,34]. Therefore, it
is expected that the comparison with experimental data
can discriminate the above approaches.

In Sect. 2 we derive the O(αs) factorization of the
collinear divergences in the process πγ∗ → π. The delicate
summation of a complete set of diagrams for achieving the
factorizations in momentum, spin, and color spaces is em-
phasized. The all-order proof based on the Ward identity is
presented in Sect. 3. The absence of the soft divergences is
also shown. The technique is then generalized to the decay
B → πlν in Sect. 4. The factorizations of soft divergences
for the B meson distribution amplitudes and of collinear
divergences for the pion distribution amplitudes are com-
pared. Section 5 is the conclusion. We refer the detailed

calculations of the O(αs) infrared divergences in the above
two processes to Appendices A, B, and C.

2 O(αs) factorization of πγ∗ → π

We start with the two-parton twist-3 factorization of the
process πγ∗ → π at the one-loop level, which will serve as
a starting point of the all-order proof. The momentum P1
(P2) of the initial-state (final-state) pion is parameterized as

P1 = (P+
1 , 0,0T) =

Q√
2

(1, 0,0T) ,

P2 = (0, P−
2 ,0T) =

Q√
2

(0, 1,0T) . (7)

Consider the kinematic region with large Q2 = −q2, q =
P2−P1 being the momentum transfer from the virtual pho-
ton, where PQCD is applicable. The lowest-order diagrams
with the valence quarks being the external particles are dis-
played in Fig. 1. The lower valence quark (an anti-quark d̄)
in the initial-state pion carries the fractional momentum
x1P1. The lower valence quark in the final state carries the
fractional momentum x2P2. Figure 1a gives the amplitude,

G(0)(x1, x2) =
i
2

eg2CF

× d̄i(x1P1)Iij [γνd(x2P2)ū(x̄2P2)γν(�P2 − x1 �P1)γµ]jl

(P2 − x1P1)2(x1P1 − x2P2)2

× Ilkuk(x̄1P1) , (8)

with x̄1(2) ≡ 1−x1(2), the identity matrix I, and the color
factor CF , where the averages over spins and colors of the
u and d̄ quarks have been done. The u and d̄ quark fields
obey the equations of motion,

x̄1 �P1u(x̄1P1) = 0 , d̄(x1P1)x1 �P1 = 0 , (9)

where the quark masses mu and md have been neglected
in high-energy scattering.

Insert the Fierz identity,

IijIlk

=
1
4

IikIlj +
1
4

(γα)ik(γα)lj +
1
4

(γ5 �n−)ik(�n+γ5)lj

+
1
4

(γ5)ik(γ5)lj

+
1
4

[γ5(�n+ �n− − 1)]ik[(�n+ �n− − 1)γ5]lj , (10)

into (8) to separate the fermion flow. Different terms in
the above identity correspond to contributions of differ-
ent twists. The PS structure proportional to γ5 and the
PT structure proportional to γ5(� n+ � n− − 1) lead to the
twist-3 contributions. Equation (10) is a modified version
appropriate for extracting collinear divergences [24]: the
choice of the PT structure in (10) and the ordinary one
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x1P1

d̄

x̄1P1

u

x2P2

x̄2P2

(a) (b)

Fig. 1a,b. Lowest-order diagrams for πγ∗ → π (B → πlν),
where the symbol × represents the virtual photon (weak de-
cay) vertex

(γ5σ
αβ)ik(σαβγ5)lj are equivalent. The PS and PT contri-

butions to the process πγ∗ → π must be included simulta-
neously in order to form the gauge interaction vertex of a
pseudo-scalar particle, which is proportional to (P1+P2)µ.

The insertion on the initial-state side gives

G(0)(x1, x2)

=
∫

dξ1

[
φ

(0)
S (x1, ξ1)H

(0)
S (ξ1, x2)

+ φ
(0)
T (x1, ξ1)H

(0)
T (ξ1, x2)

]
. (11)

The functions φ
(0)
S(T) and H

(0)
S(T),

φ
(0)
S (x1, ξ1) =

1
4m0

d̄(x1P1)γ5u(x̄1P1)δ(ξ1 − x1) ,

φ
(0)
T (x1, ξ1)

=
1

4m0
d̄(x1P1)γ5(�n+ �n− − 1)u(x̄1P1)δ(ξ1 − x1) ,

H
(0)
S (ξ1, x2) =

i
2

eg2CF m0

× tr[γνd(x2P2)ū(x̄2P2)γν(�P2 − ξ1 �P1)γµγ5]
(P2 − ξ1P1)2(ξ1P1 − x2P2)2

,

H
(0)
T (ξ1, x2) =

i
2

eg2CF m0 (12)

×tr[γνd(x2P2)ū(x̄2P2)γν(�P2 − ξ1 �P1)

×γµ(�n+ �n− − 1)γ5]

/((P2 − ξ1P1)2(ξ1P1 − x2P2)2) ,

define the lowest-order perturbative PS (PT) distribution
amplitude and the corresponding hard amplitude, respec-
tively. The meaning of the variable ξ1, regarded as a mo-
mentum fraction modified by collinear gluon exchanges,
will become clear below.

Consider the O(αs) radiative corrections to Fig. 1a in
the covariant (Feynman) gauge, which are shown in Fig. 2,
and identify their infrared divergences. Self-energy correc-
tions to the internal lines, giving a next-to-leading-order
hard amplitude, are not included. Here we summarize only
the results of the O(αs) factorization, and leave the details
to Appendix A. It will be shown that all the diagrams in
Fig. 2 can be written as the convolution of the lowest-order
hard amplitudes H

(0)
S,T in (12) with the O(αs) divergent

(a)

l

(b) (c)

α β

λ
(d) (e) (f) (g)

α

βλ

(h) (i) (j) (k)

Fig. 2a–k. O(αs) radiative corrections to Fig. 1a

distribution amplitudes φ
(1)
S,T in the collinear region with

the loop momentum l parallel to P1. The expressions of
φ

(1)
S,T will provide a basis of constructing the all-order def-

initions of the two-parton twist-3 distribution amplitudes
as non-local matrix elements.

Figures 2a–c are the two-particle reducible diagrams
with the additional gluon attaching the two valence quarks
of the initial state. It has been known that soft divergences
cancel among these diagrams. The reason for this cancel-
lation is that soft gluons, being huge in space-time, do not
resolve the color structure of the pion. Collinear divergences
in Figs. 2a–c do not cancel, since the loop momentum flows
into the internal lines in Fig. 2b, but not in Figs. 2a,c. In-
serting the Fierz identity into Figs. 2a–c, we obtain the
approximate loop integrals in the collinear region,

I(a),(b),(c) ≈
∑

n=S,T

∫
dξ1φ

(1)
na,nb,nc(x1, ξ1)H(0)

n (ξ1, x2) ,

(13)

respectively. The O(αs) PS pieces,

φ
(1)
Sa (x1, ξ1) =

−g2CF

8m0

×
∫

d4l

(2π)4
d̄(x1P1)γ5

i
x̄1 �P1

γβ
x̄1 �P1+ � l

(x̄1P1 + l)2

×γβu(x̄1P1)
1
l2

δ(ξ1 − x1) , (14)

φ
(1)
Sb (x1, ξ1)

=
ig2CF

4m0

∫
d4l

(2π)4
d̄(x1P1)γβ

x1 �P1− � l
(x1P1 − l)2

(15)

×γ5
x̄1 �P1+ � l

(x̄1P1 + l)2
γβu(x̄1P1)

1
l2

δ

(
ξ1 − x1 +

l+

P+
1

)
,

φ
(1)
Sc (x1, ξ1)
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=
g2CF

8m0

∫
d4l

(2π)4
d̄(x1P1)γβ

x1 �P1− � l
(x1P1 − l)2

γβ −i
x1 �P1

×γ5u(x̄1P1)
1
l2

δ(ξ1 − x1) , (16)

and the PT pieces with γ5 in the above expressions being
replaced by γ5(�n+ �n− −1), contain the collinear (logarith-
mic) divergences in Figs. 2a,b,c, respectively. Note that the
momentum fraction x1 in Fig. 2b has been modified into
ξ1 = x1 − l+/P+

1 , because the loop momentum l flows
through the hard gluon.

We then consider the factorization of the loop integrals
associated with the two-particle irreducible diagrams in
Figs. 2d–g. Here we summarize only the results of the fac-
torization, and refer the detail to Appendix A. Summing
the contributions from Figs. 2d–g, we arrive at

(g)∑
i=(d)

Ii ≈
∑

n=S,T

∫
dξ1φ

(1)
nu(x1, ξ1)H(0)

n (ξ1, x2) , (17)

with the PS piece being associated with the collinear gluon
emitted from the incoming u quark,

φ
(1)
Su (x1, ξ1) =

−ig2CF

4m0

×
∫

d4l

(2π)4
d̄(x1P1)γ5

x̄1 �P1+ � l
(x̄1P1 + l)2

γβu(x̄1P1)
1
l2

n−β

n− · l

×
[
δ(ξ1 − x1) − δ

(
ξ1 − x1 +

l+

P+
1

)]
. (18)

The corresponding PT pieces are defined similarly with γ5
in the above expressions being replaced by γ5(�n+ �n− −1).

Some remarks are in order.
(i) Figures 2d,g are free of soft divergences, because the
additional gluon attaches the virtual gluon and the virtual
quark, respectively. The soft divergences cancel between
Figs. 2e,f.
(ii) Figures 2d–g possess different color factors due to dif-
ferent color flows. The net color factor CF is a consequence
of summing a set of diagrams, and implies the factoriza-
tion of the distribution amplitude from other parts of the
process in color space.
(iii) The Feynman rule n−β/n− · l, coming from the eikonal
approximation for the l ‖ P1 configuration, could be gen-
erated by a Wilson line in the direction of n−. This factor
will not appear, if the proof is performed in the axial gauge
n− · A = 0.
(iv)The first and second δ-functions correspond to the cases
without and with the loop momentum l flowing through
the internal lines, respectively; that is, to Figs. 3a,b, respec-
tively, where the double lines represent the Wilson lines
mentioned above.

The analysis of Figs. 2h–k is similar. The soft diver-
gences cancel among these diagrams. Summing Figs. 2h–k,
we derive the correct color factor:

(k)∑
i=(h)

Ii ≈
∑

n=S,T

∫
dξ1φ

(1)
nd̄

(x1, ξ1)H(0)
n (ξ1, x2) , (19)

l

(a)

l

(b) (c) (d)

0

∞∞

y−

(e)

Fig. 3. a–d Infrared divergent diagrams factored out of Fig. 2d–
k. e The graphic definition of the two-parton twist-3 pion
distribution amplitudes

where the PS piece,

φ
(1)
Sd̄

(x1, ξ1) =
ig2CF

4m0

×
∫

d4l

(2π)4
d̄(x1P1)γβ x1 �P1− � l

(x1P1 − l)2
γ5u(x̄1P1)

1
l2

n−β

n− · l

×
[
δ(ξ1 − x1) − δ

(
ξ1 − x1 +

l+

P+
1

)]
, (20)

is associated with the collinear gluon emitted from the d̄
quark. The first and second δ-functions in (20) correspond
to Figs. 3d,c respectively.

The sum of (13), (17) and (19) leads to

(k)∑
i=(a)

Ii ≈
∑

n=S,T

∫
dξ1φ

(1)
n (x1, ξ1)H(0)

n (ξ1, x2) , (21)

where φ
(1)
S and φ

(1)
T are represented by the O(αs) terms of

the non-local matrix elements with the structures γ5 and
γ5(�n+ �n− − 1) sandwiched,

φS(x, ξ)

= i
P+

m0

∫
dy−

2π
eiξP+y−〈0|d̄(y−)γ5

×Wn−(y−)u(0)|u(x̄P )d̄(xP )〉 ,

φT(x, ξ)

= i
P+

m0

∫
dy−

2π
eiξP+y−〈0|d̄(y−)γ5(�n+ �n− − 1)

×Wn−(y−)u(0)|u(x̄P )d̄(xP )〉 , (22)

respectively. Expanding the quark field d̄(y−) and the path-
ordered exponential (Wilson line) into powers of y−, the
above matrix elements can be expressed as a series of the
covariant derivatives (D+)nd̄(0), and are gauge invariant.
The integral over z contains twopieces: for the upperWilson
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line in Fig. 3a, z runs from 0 to ∞. For the lower Wilson line
in Fig. 3b, z runs from ∞ back to y−. The light-cone coordi-
nate y− �= 0 reflects the fact that the collinear divergences
in Fig. 2 do not cancel. Notice the different kets |π+(P )〉 and
|u(x̄P )d̄(xP )〉 in (5) and (22), respectively. Equation (22)
plays the role of an infrared regulator for parton-level di-
agrams. A hard amplitude, obtained by subtracting (22)
from the parton-level diagrams, then corresponds to the
regularized parton-level diagrams. After determining the
gauge-invariant infrared-finite hard amplitude H(x), we
convolute it with the physical two-parton twist-3 pion dis-
tribution amplitudes defined in (5) and graphically shown
in Fig. 3e. Models for the two-parton twist-3 pion distribu-
tion amplitudes have been derived using QCD sum rules [9].

It is easy to confirm that φ
(1)
S,T is reproduced by the

perturbative expansion of the matrix elements in (22). Take
(18) as an example. Fourier transforming the gauge field
A(zn−) into Ã(l), we have

−ig
∫ ∞

0
dz exp[iz(n− · l + iε)]n− · Ã(l)

= g
nα

−
n− · l

Ãα(l) . (23)

The field Ãα(l), contracted with another gauge field associ-
ated with the u quark, gives the gluon propagator in Fig. 3a.
It is then realized that the eikonal propagator is generated
by the path-ordered exponential. The second piece of the
Wilson line corresponds to the second term in (18):

−ig
∫ y−

∞
dz exp[iz(n− · l + iε)]n− · Ã(l)

= −g
nα

−
n− · l

exp(il+y−)Ãα(l) , (24)

where the extra Fourier factor exp(il+y−) leads to the
function δ(ξ − x + l+/P+

1 ). The field Ãα(l), contracted
with another gauge field associated with the u quark, gives
the gluon propagator in Fig. 3b. The Feynman rules for
(20) can be reproduced in a similar way, where Ãα(l) is
contracted with another gauge field associated with the d̄
quark. Equations (14)–(16) are derived by contracting the
gluon fields associated with the u and d̄ quarks.

The above derivation also applies straightforwardly to
the factorization of the collinear divergences associated
with the final state, which arise from the region with the
loop momentum parallel to P2. Hence, we have an expres-
sion similar to (21),

∑
m=S,T H

(0)
m ⊗φ

(1)
m , where φ

(1)
m is the

final-state distribution amplitude, and H
(0)
m is the hard am-

plitude with the Fierz identity inserted into the final-state
side of H(0). The symbol ⊗ represents the convolution in
the variable ξ2. The momentum fraction associated with
the final state will be modified into ξ2 = x2 − l−/P−

2 by
the collinear gluons parallel to P2, if the loop momentum
l flows through the hard amplitude H

(0)
m .

The O(αs) radiative corrections to Fig. 1b are displayed
in Fig. 4. The factorization of the collinear divergences from

(a)

l

(b) (c)

α β

λ
(d) (e) (f) (g)

α

βλ

(h) (i) (j) (k)

Fig. 4a–k. O(αs) radiative corrections to Fig. 1b

these diagrams is referred to Appendix B. The result is
similar to (21) but without the PT contributions, because
of γν(� n+ � n− − 1)γν = 0, where the gamma matrices γν

and γν come from the gluon vertices in Fig. 1b. Hence, we
derive, from Fig. 4,

(k)∑
i=(a)

Ii ≈
∫

dξ1φ
(1)
S (x1, ξ1)H

(0)
S (ξ1, x2) , (25)

where the definition of the O(αs) PS distribution ampli-
tude φ

(1)
S is the same as in (22). This is expected due to

the universality.
In summary, the O(αs) factorization of the process

πγ∗ → π is written as

G(1) =
∑

n=S,T

φ(1)
n ⊗ H(0)

n +
∑

m=S,T

H(0)
m ⊗ φ(1)

m + H(1),(26)

where G(1) denotes the complete set of the O(αs) cor-
rections, and H

(0)
n,m receive the contributions from both

Figs. 1a,b now. The first term on the right-hand side of the
above expression does not contain the collinear divergences
from the loop momentum l parallel to P2. In this region
l+ is negligible, ξ1 approaches x1, and the corresponding
collinear divergences cancel in φ

(1)
n . For the similar reason,

the second term on the right-hand side of (26) does not
contain the collinear divergences from l parallel to P1. That
is, the initial-state and final-state collinear divergences in
G(1) have been completely factorized into the first and sec-
ond terms on the right-hand side of (26), respectively. The
O(αs) hard amplitude H(1), defined via (26), is infrared
finite. Note that H(1) contains the self-energy corrections
to the internal lines.

Summing (26) and the lowest-order diagrams G(0), the
factorization formula for the two-parton twist-3 contribu-
tions to the process πγ∗ → π is given, up to O(αs), by

G(0) + G(1)
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=
∑

n,m=S,T

(φ(0)
n + φ(1)

n ) ⊗ (H(0)
nm + H(1)

nm)

⊗(φ(0)
m + φ(1)

m ) , (27)

where the trivial factorizations,

H(0)
n =

∑
m=S,T

H(0)
nm ⊗ φ(0)

m ,

H(0)
m =

∑
n=S,T

φ(0)
n ⊗ H(0)

nm ,

H(1) =
∑

n,m=S,T

φ(0)
n ⊗ H(1)

nm ⊗ φ(0)
m , (28)

have been adopted. The last formula in (28) defines the
O(αs) hard amplitude H

(1)
nm. The explicit expression of, for

example, H
(0)
SS , is given by

H
(0)
SS (ξ1, ξ2) =

i
2

eg2CF m2
0

×
{

tr[γνγ5γν(�P2 − ξ1 �P1)γµγ5]
(P2 − ξ1P1)2(ξ1P1 − ξ2P2)2

+
tr[γνγ5γµ(�P1 − ξ2 �P2)γνγ5]
(P1 − ξ2P2)2(ξ1P1 − ξ2P2)2

}
. (29)

It is obvious that the PS and PT structures must be in-
cluded simultaneously for a complete two-parton twist-3
collinear factorization.

3 All-order factorization of πγ∗ → π

In this section we present the all-order proof of the two-
parton twist-3 factorization theorem for the process πγ∗ →
π, and construct the gauge-invariant distribution ampli-
tudes in (22). It has been mentioned in the Introduction
that factorizations of a QCD process in momentum, spin,
and color spaces require summation of many diagrams, es-
pecially at higher orders. The diagram summation can be
handled in an elegant way by employing the Ward identity,

lµGµ(l, k1, k2, . . . , kn) = 0 , (30)

where Gµ represents a physical amplitude with an external
gluon carrying the momentum l and with n external quarks
carrying the momenta k1, k2, . . ., kn. All these external
particles are on mass shell. The Ward identity can be easily
derived by means of the Becchi–Rouet–Stora transforma-
tion [35]. We shall employ the similar Ward identity,

lµ1 Gµν(l1, l2, k1, k2, . . . , kn)lν2 = 0 , (31)

where Gµν represents a physical amplitude with two ex-
ternal gluons carrying the momenta l1 and l2, and with n
external quarks.

We shall prove the two-parton twist-3 factorization the-
orem for the process πγ∗ → π to all orders by induction.
The factorization of the O(αs) collinear divergences has

been worked out in Sect. 2. Assume that the factorization
theorem holds up to O(αN

s ):

G(k) =
∑

n′,m′=S,T

k∑
i=0

k−i∑
j=0

φ
(i)
n′ ⊗ H

(k−i−j)
n′m′ ⊗ φ

(j)
m′ ,

k = 0, 1, . . . , N . (32)

G(k) denotes the parton-level diagrams of O(αk
s ) with G(0)

shown in Fig. 1. The initial-state distribution amplitude
φ

(i)
n′ is defined by the O(αi

s) terms in the perturbative ex-
pansion of (22), and the final-state distribution amplitude
φ

(j)
m′ defined similarly by the complex conjugate of (22).

H
(k−i−j)
n′m′ is the remaining O(αk−i−j

s ) piece of the process,
which does not contain infrared divergences. Equation (32)
implies that all the initial-state and final-state collinear
divergences in G(k) have been collected into φ

(i)
n′ and φ

(j)
m′

systematically. Inserting the Fierz identity, we also obtain
the trivial factorizations of the distribution amplitudes φ
and the diagrams G at arbitrary orders of αs, similar to
(28):

G(k) =
∑
n,m

φ(0)
n ⊗ G(k)

nm ⊗ φ(0)
m , φ

(i)
n′ =

∑
n

φ(0)
n ⊗ φ

(i)
nn′ ,

φ
(j)
m′ =

∑
m

φ
(j)
m′m ⊗ φ(0)

m . (33)

We then have the factorization,

G(k)
nm =

∑
n′,m′=S,T

k∑
i=0

k−i∑
j=0

φ
(i)
nn′ ⊗ H

(k−i−j)
n′m′ ⊗ φ

(j)
m′m , (34)

inwhich, for example,φ(1)
SS contains the pieceφ

(1)
SSu extracted

from (18),

φ
(1)
SSu(x1, ξ1)

=
−ig2CF

4m0

∫
d4l

(2π)4
tr

[
γ5

x̄1 �P1+ � l
(x̄1P1 + l)2

γβγ5

]
1
l2

n−β

n− · l

×
[
δ(ξ1 − x1) − δ

(
ξ1 − x1 +

l+

P+
1

)]
. (35)

Below we prove the collinear factorization of the
O(αN+1

s ) diagrams G(N+1), assuming (32) or (34). Look
for the radiative gluon in a subset of O(αN+1

s ) diagrams
G(N+1), one of whose ends attaches the outer most vertex
on the upper u quark line. Let α denote the outer most
vertex, and β denote the attachments of the other end of
the identified gluon inside the rest of the diagrams. There
are two types of collinear configurations associated with
this gluon, depending on whether the vertex β is located on
an internal line with the momentum along P1. The fermion
propagator adjacent to the vertex α is proportional to �P1
in the collinear region with the loop momentum l parallel
to P1. If β is not located on a collinear line along P1, the
component γ+ in γα and the minus component of the ver-
tex β give the leading contribution (collinear divergence).
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l

+ + = 0

(a)

αN
s

= + ⊗ αN
s

(b)

Fig. 5. a The Ward identity. b Factorization of O(αN+1
s )

diagrams as a result of a

If β is located on a collinear line along P1, both α and β
represent the transverse components for the leading contri-
bution. This configuration is the same as of the self-energy
correction to an on-shell particle. According to the above
classification, we decompose the tensor gαβ appearing in
the propagator of the identified gluon into [1]

gαβ = δα+δβ− − δα⊥δβ⊥ + δα−δβ+ . (36)

The first (second) term on the right-hand side of (36) ex-
tracts the aforementioned first (second) type of initial-state
collinear divergences. The third term does not contribute
due to the equations of motion in (9).

We discuss the factorization of the first type of collinear
configurations denoted by G

(N+1)
I· , where the identified

collinear gluon is emitted from the initial-state quarks. As
stated before, the identified gluon with α = + and β = −
does not attach the upper or lower quark line directly, which
carries the momentum along P1. That is, those diagrams
with Figs. 2a–c as the O(αs) subdiagrams are excluded from
the set of G

(N+1)
I· as discussing the first type of collinear

configurations. We employ the replacement,

δα+δβ− → n−αlβ
n− · l

, (37)

where the light-like vector n−α selects the plus component
of γα, and lβ selects the minus component of the vertex β in
the collinear region. In principle, the arbitrary lβ can attach
all the internal lines, nomatter they are or are not parallel to
P1. We denote the diagrams with the above replacement as
G

(N+1)
‖· . The point is that G

(N+1)
I· and G

(N+1)
‖· contain the

identical first type of collinear divergences, whose collection
will be performed by means of (37).

We then consider Fig. 5a, which contains a complete set
of contractions of lβ , since the second and third diagrams
have been included, for which lβ selects a plus vertex.
The contractions of lβ , represented by arrows, hint the
application of the Ward identity in (30) to the case, in
which the on-shell external u quark, d̄ quark and gluon
carry the momenta ξ̄1P1, x1P1 and l, respectively, with
ξ̄1 ≡ 1 − ξ1. The Ward identity states that the expression
in Fig. 5a vanishes, and that the first diagram we consider

is related to the second and third diagrams, which, after
employing (9), give

lβ
1

ξ̄1 �P1− � l γ
βu(ξ̄1P1)

=
1

ξ̄1 �P1− � l (� l − ξ̄1 �P1 + ξ̄1 �P1)u(ξ̄1P1) = −u(ξ̄1P1) ,

lβ d̄(x1P1)γβ 1
x1 �P1− � l = −d̄(x1P1) , (38)

respectively. The terms u(ξ̄1P1) and d̄(x1P1) at the ends
of the above expressions are associated with the O(αN

s )
diagrams.

We insert the Fierz identity into Fig. 5a, and factor the
lowest-order expressions d̄(x1P1)Γu(ξ̄1P1) with Γ being
the PS or PT structure considered in this work. The result
is a relation shown in Fig. 5b, where the cuts on the quark
lines denote the insertion of the Fierz identity, and the dou-
ble (Wilson) lines represent n−α/n− · l in (37). For the case
with the identified gluon emitted from the outer most ver-
tex on the u quark line, Fig. 5b implies that the considered
O(αN+1

s ) diagrams are factorized into the convolution of
the full diagrams G

(N)
n with φ

(1)
nu , n= S, T. The same discus-

sion applies to the factorization of the O(αN+1
s ) diagrams

with the collinear gluon emitted from the outer most vertex
on the d̄ quark line, leading to a convolution of G

(N)
n with

φ
(1)
nd̄

. Similarly, for the subset G
(N+1)
·I , in which the iden-

tified radiative gluon emitted by the outgoing quarks, the
collinear divergences are also classified into the two types.
In this case it is the third term in (36) that corresponds to
the first type of collinear divergences, and the replacement
in (37) is modified into

δα−δβ+ → n+αlβ
n+ · l

. (39)

The pieces φ
(1)
mu and φ

(1)
md̄

containing the identified gluon

are factored out of the considered G
(N+1)
·‖ in the collinear

region with the loop momentum parallel to P2.
We conclude that the subset of diagrams G

(N+1)
‖· , in

which the replacement in (37) is applied to the initial-
state side, and G

(N+1)
·‖ , in which the replacement in (39)

is applied to the final-state side, are written as

G
(N+1)
‖· ≈

∑
n=S,T

φ
(1)
n‖ ⊗ G(N)

n , (40)

G
(N+1)
·‖ ≈

∑
m=S,T

G(N)
m ⊗ φ

(1)
m‖ , (41)

respectively, where φ
(1)
n(m)‖ represents

φ
(1)
n(m)‖ = φ

(1)
n(m)u + φ

(1)
n(m)d̄ . (42)

Equation (40) is displayed in Fig. 6. Other diagrams, which
do not contain the radiative gluons on either the initial-
state side or the final-state side, are self-energy corrections
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u

d̄

γ+

G +

u

d̄
γ+

G

≈
u

d̄

γ5 γ5 αN
s

+

u

d̄

γ5( � n+ � n− − 1) ( � n+ � n− − 1)γ5 αN
s

= + + +
Fig. 6. Factorization of O(αN+1

s ) diagrams cor-
responding to (37)

to internal lines. They are infrared finite, and contribute
to the O(αN+1

s ) hard amplitude.
The above procedures are also applicable to theO(αj+1

s )
initial-state and final-state distribution amplitudes φ

(j+1)
n

and φ
(j+1)
m . We identify the gluon in a subset of diagrams

φ
(j+1)
n , one of whose ends attaches the outer most vertex

α on the u quark line. The other end attaches the vertex
β inside the rest of the diagrams. For the replacements
in (37) and (39), which collect the complete first type of
collinear divergences, we have a Ward identity similar to
Fig. 5a. Figure 5b then leads to the factorizations of the
initial-state and final-state distribution amplitudes,

φ
(j+1)
n‖ ≈

∑
n′=S,T

φ
(1)
n′‖ ⊗ φ

(j)
n′n , (43)

φ
(j+1)
m‖ ≈

∑
m′=S,T

φ
(j)
mm′ ⊗ φ

(1)
m′‖ , (44)

where the PS and PT structures in (10) have been inserted.
We sum (40) and (41), and subtract the double-counted

diagrams G
(N+1)
‖ ‖ , to which the replacements are applica-

ble to both the initial-state and final-state sides as shown
in Fig. 7a. For the factorization of G

(N+1)
‖ ‖ , we rely on the

Ward identity in (31). Note that G
(N+1)
‖ ‖ do not contain the

diagrams like Fig. 7b, in which the same gluon is identified
in G

(N+1)
‖· and in G

(N+1)
·‖ simultaneously. This type of di-

agrams are not double-counted, and (31) does not apply
to them. The result is

G
(N+1)
‖· + G

(N+1)
·‖ − G

(N+1)
‖ ‖

≈
∑

n,m=S,T

[
φ

(1)
n‖ ⊗ G(N)

nm ⊗ φ(0)
m + φ(0)

n ⊗ G(N)
nm ⊗ φ

(1)
m‖

−φ
(1)
n‖ ⊗ G(N−1)

nm ⊗ φ
(1)
m‖

]
, (45)

where the trivial factorizations, similar to (28), have been
inserted. Substituting (34), (43), and (44) into (45), simple
algebra gives

G
(N+1)
‖· + G

(N+1)
·‖ − G

(N+1)
‖ ‖

≈
∑

n,m=S,T

N∑
i=0

N−i∑
j=0

[
φ

(i+1)
n‖ ⊗ H(N−i−j)

nm ⊗ φ(j)
m

+φ(i)
n ⊗ H(N−i−j)

nm ⊗ φ
(j+1)
m‖

−φ
(i+1)
n‖ ⊗ H(N−i−j−1)

nm ⊗ φ
(j+1)
m‖

]
. (46)

Finally, we recover the tensors δα+δβ− and δα−δβ+ on both
sides of (46).

The factorization of the first type of collinear diver-
gences associated with the identified radiative gluon from
G

(N+1)
I , N ≥ 1, is then given by

G
(N+1)
I ≡ G

(N+1)
I· + G

(N+1)
·I − G

(N+1)
I I

(a) (b)

Fig. 7. a A typical diagram of G
(N+1)
‖ ‖ . b This diagram does

not belong to G
(N+1)
‖ ‖
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≈
∑

n,m=S,T

N∑
i=0

N−i∑
j=0

[
φ

(i+1)
nI ⊗ H(N−i−j)

nm ⊗ φ(j)
m

+φ(i)
n ⊗ H(N−i−j)

nm ⊗ φ
(j+1)
mI

−φ
(i+1)
nI ⊗ H(N−i−j−1)

nm ⊗ φ
(j+1)
mI

]
, (47)

where φ
(i+1)
nI (φ(j+1)

mI ) contains only the first (third) term
in (36).

It is obvious that (47) is not Lorentz covariant, since
G

(N+1)
I , φ

(i)
nI and φ

(j)
mI include only the first or third term in

(36). The Lorentz covariance can be recovered by adding
the other two terms in (36) into the tensors for the identi-
fied radiative gluons on both sides of (47). Recovering the
Lorentz covariance, the second type of collinear configu-
rations associated with the tensor −δα⊥δβ⊥ is taken into
account. We explain the idea by starting with G

(N+1)
I· as

an example, whose factorization is written as

G
(N+1)
I· ≈

∑
n,m=S,T

N∑
i=0

N−i∑
j=0

φ
(i+1)
nI ⊗H(N−i−j)

nm ⊗φ(j)
m . (48)

We add G
(N+1)
⊥· on the left-hand side to restore the Lorentz

covariance, which contain the identified gluon correspond-
ing to the second term in (36). As stated before, this gluon
attaches only the lines parallel to P1, and generates merely
the collinear divergences associated with the initial-state
pion. That is, it does not change the hard amplitudes
H

(N−i−j)
nm and the final-state distribution amplitudes φ

(j)
m .

To recover the Lorentz covariance of the right-hand side,
the only option is that the identified gluon contributes the
initial-state distribution amplitudes φ

(i+1)
n⊥ . We then have

G
(N+1)
I· + G

(N+1)
⊥·

≈
∑

n,m=S,T

N∑
i=0

N−i∑
j=0

φ(i+1)
n ⊗ H(N−i−j)

nm ⊗ φ(j)
m . (49)

The similar procedure applies to G
(N+1)
·I and G

(N+1)
I I :

the adding of the tensor −δα⊥δβ⊥ to G
(N+1)
·I and G

(N+1)
I I

does not change thehardamplitudes.To recover theLorentz
covariance, the only option is that the identified gluon
contributes φ

(i)
n⊥ or φ

(j)
m⊥. Finally, the complete collinear

factorization of the diagrams G(N+1) is given by

G(N+1)

=
∑

n,m=S,T

N∑
i=0

N−i∑
j=0

[
φ(i+1)

n ⊗ H(N−i−j)
nm ⊗ φ(j)

m

+φ(i)
n ⊗ H(N−i−j)

nm ⊗ φ(j+1)
m

−φ(i+1)
n ⊗ H(N−i−j−1)

nm ⊗ φ(j+1)
m

]
+ F (N+1) , (50)

where the O(αN+1
s ) function F (N+1) contains the infrared-

finite diagrams (self-energy corrections to internal lines)

mentioned before. Equation (50) can be simplified into

G(N+1) =
∑

n,m=S,T

N+1∑
i=0

N+1−i∑
j=0

φ(i)
n ⊗ H(N+1−i−j)

nm ⊗ φ(j)
m ,

(51)
with theO(αN+1

s ) hard amplitudeH
(N+1)
nm beingdefinedvia

F (N+1) =
∑

n,m=S,T

φ(0)
n ⊗ H(N+1)

nm ⊗ φ(0)
m . (52)

Equation (51) states that all the two-parton twist-3 col-
linear divergences in the process πγ∗ → π have been factor-
ized into the distribution amplitudes in (22) order by order.

Before closing this section, we prove that soft diver-
gences do not exist in the process πγ∗ → π at the two-
parton twist-3 level. The O(αs) soft cancellation has been
demonstrated in Sect. 2. Assume that the O(αN

s ) diagrams
G(N) do not contain any soft divergences, though they
contain collinear ones. They are then dominated by hard
dynamics, by collinear dynamics associated with the initial-
state pion, and by collinear dynamics associated with the
final-state pion. Consider the O(αN+1

s ) diagrams G(N+1).
We look for the gluon radiated from the outer most vertex
on the u quark line in the initial state, and adopt the de-
composition of the tensor gαβ in (36). The attachment of a
soft gluon to an off-shell internal line does not introduce an
infrared divergence, since an off-shell propagator behaves
at least like 1/Q. As the soft gluon attaches a collinear line
along P2, the vertex β must be dominated by the minus
component. The gamma matrix γα is dominated by the
component γ+ stated above. Therefore, the replacement in
(37) still holds for the first term on the right-hand side of
(36). Similarly, the second term on the right-hand side of
(36) corresponds to the attachment of the soft gluon to a
collinear line along P1. Again, the third term on the right-
hand side of (36) does not contribute due to the equations
of motion.

The above reasoning indicates that the configurations
associated with the identified soft gluon are the same as
those associated with the identified collinear gluon. The
procedure for deriving the collinear factorization then ap-
plies. For the first term in (36), we arrive at (40) for the soft
factorization. Because the soft divergences cancel among
the diagrams for φ

(1)
n‖ shown in Fig. 3 [between Figs. 3a,b

and between Figs. 3c,d], and G(N) do not contain soft diver-
gences by assumption, G

(N+1)
‖· , i.e., G

(N+1)
I· do not either.

We then turn to the O(αN+1
s ) diagrams G

(N+1)
⊥· associated

with the tensor −δα⊥δβ⊥. If they contain soft divergences,
the evaluation of these divergences is not Lorentz covari-
ant, leading to a contradiction. Therefore, the subset of
O(αN+1

s ) diagrams G(N+1) with the identified gluon ra-
diated from the initial-state quarks must be free of soft
divergences. The similar argument holds for another sub-
set with the identified gluon radiated from the final-state
quarks. These two subsets have covered all the O(αN+1

s )
diagrams G(N+1), which have potential soft divergences.
Hence, we conclude that G(N+1) are free of soft diver-
gences. Extending N to infinity, the absence of the soft
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divergences in the diagrams G is proved. We then com-
plete the all-order proof of the two-parton twist-3 collinear
factorization theorem for the process πγ∗ → π.

4 Factorization of B → π�ν

As emphasized in the Introduction, the contributions to the
exclusive semileptonic decay B → πlν from the two-parton
twist-3 pion distribution amplitudes φS,T are of the same
power as those from the twist-2 one.These contributions are
originally proportional to the ratio m0/MB . However, the
corresponding convolution integral for the B → π form
factor is linearly divergent in the collinear factorization
theorem, such that it is proportional to the ratio MB/Λ̄,
if regulated by an effective cut-off xc ∼ Λ̄/MB . Combining
the two ratios m0/MB and MB/Λ̄, the two-parton twist-3
contributions are in fact not down by a power of 1/MB :

m0

MB

∫ 1

xc

dx2HS(x2)φS(x2)

∼ m0

MB

∫ 1

xc

dx2
1
x2

2
∼ O

( m0

Λ̄

)
, (53)

for the asymptotic functional form φS ∼ 1 [9] and HS ∼
1/x2

2 in (70) below. The presence of the linear divergences
modifies the naive power counting rules, and the two-parton
twist-3 contributions become leading-power in the B meson
transition form factors [24]. This is our motivation to prove
the corresponding factorization theorem. Note that the
two-parton twist-3 contributions are next-to-leading-power
in the pion form factor.

The momentum P1 of the B meson and the momentum
P2 of the outgoing pion are parameterized as

P1 =
MB√

2
(1, 1,0T) , P2 =

MB√
2

(0, η,0T) , (54)

where η denotes the energy fraction carried by the pion.
Consider the kinematic region with small q2, q = P1 − P2
being the lepton pair momentum, i.e., with large η, where
PQCD is applicable. Let the light spectator d̄ quark in the
B meson (pion) carry the momentum k1 (k2 = x2P2), and
the b quark carry the momentum P1 − k1. We have the
equations of motion,

(�P1− � k1 − mb)b(P1 − k1) = 0 , d̄(k1) �k1 = 0 , (55)

where the d̄ quark mass md has been neglected, and those
for the valence quarks in the pion.

4.1 O(αs) factorization

We start with the O(αs) collinear factorization of the final-
state distribution amplitudes. The lowest-order diagrams
for the B → πlν decay are the same as in Fig. 1, but with
the upper quark line in the initial state representing a b

quark and with the symbol × representing a weak decay
vertex. Figure 1a gives the amplitude,

G(0)(x1, x2)

=
−g2CF

2
u(x̄2P2)γν(�P2− � k1)γµb(P1 − k1)

(P2 − k1)2(k1 − x2P2)2

×d̄(k1)γν d̄(x2P2) . (56)

Inserting the Fierz identity in (10) into the above expres-
sion, we obtain the trivial factorization formula,

G(0)(x1, x2) =
∫

dξ2H
(0)
S (x1, ξ2)φ

(0)
S (x2, ξ2) , (57)

with the lowest-order hard amplitude and distribution am-
plitude,

H
(0)
S (x1, ξ2)

=
−g2CF

2
m0

tr[γν �P2γµb(P1 − k1)d̄(k1)γνγ5]
(P2 − k1)2(k1 − x2P2 + l)2

=
−g2CF

2η2M4
B

m0
tr[γν �P2γµb(P1 − k1)d̄(k1)γνγ5]

x2
1ξ2

,

φ
(0)
S (x2, ξ2)

=
1

4m0
u(x̄2P2)γ5d(x2P2)δ(ξ2 − x2) , (58)

where the higher-power term �k1 in the numerator has been
dropped. The PT structure does not contribute because of
γν(�n+ �n− − 1)γ5γν = 0. It is observed that H

(0)
S depends

only on the single plus component of k1 through k1 · P2,
which defines the momentum fraction x1 = k+

1 /P+
1 carried

by the d̄ quark in the B meson.
Consider O(αs) corrections to Fig. 1a in the covariant

gauge, which are displayed in Fig. 4 with the initial and final
states being flipped. Here we summarize only the results
of their factorization, and refer the details to Appendix C.
The factorization of the two-particle reducible diagrams
in Figs. 4a–c is straightforward. After inserting the Fierz
identity, the loop integrals associated with Figs. 4a,b,c are
written as

I(a),(b),(c) ≈
∫

dξ2H
(0)
S (x1, ξ2)φ

(1)
Sa,Sb,Sc(x2, ξ2) , (59)

where the PS collinear pieces are given by

φ
(1)
Sa (x2, ξ2)

=
−ig2CF

8m0

∫
d4l

(2π)4
u(x̄2P2)γβ

x̄2 �P2+ � l
(x̄2P2 + l)2

γβ 1
x̄2 �P2

×γ5d(x2P2)
1
l2

δ(ξ2 − x2) , (60)

φ
(1)
Sb (x2, ξ2)

=
ig2CF

4m0

∫
d4l

(2π)4
u(x̄2P2)γβ

x̄2 �P2+ � l
(x̄2P2 + l)2

γ5
x2 �P2− � l

(x2P2 − l)2



406 Makiko Nagashima, Hsiang-nan Li: Two-parton twist-3 factorization in perturbative QCD

×γβd(x2P2)
1
l2

δ

(
ξ2 − x2 +

l−

P−
2

)
, (61)

φ
(1)
Sc (x2, ξ2)

=
−ig2CF

8m0

∫
d4l

(2π)4
u(x̄2P2)γ5

1
x2 �P2

γβ
x2 �P2− � l

(x2P2 − l)2

×γβd(x2P2)
1
l2

δ(ξ2 − x2) . (62)

The momentum fraction ξ2 in Fig. 4b has been modified
into ξ2 = x2 − l−/P−

2 by the collinear gluon exchange.
The collinear factorization of Figs. 4d–g is summa-

rized as
(g)∑

i=(d)

Ii ≈
∫

dξ2H
(0)
S (x1, ξ2)φ

(1)
Su (x2, ξ2) , (63)

where the PS collinear piece,

φ
(1)
Su (x2, ξ2) =

−ig2CF

4m0

∫
d4l

(2π)4
u(x̄2P2)γβ x̄2 �P2+ � l

(x̄2P2 + l)2

× γ5d(x2P2)
1
l2

n+β

n+ · l
(64)

×
[
δ(ξ2 − x2) − δ

(
ξ2 − x2 +

l−

P−
2

)]
,

is associated with the collinear gluon emitted from the
u quark. The appropriate color factor CF indicates the
factorization between the distribution amplitude and the
hard amplitude in color space, which can be achieved only
by summing a set of diagrams. The collinear divergent piece
in (64) has been split into two terms as a consequence of
the Ward identity. The first and second terms correspond
to the cases without and with the loop momentum l flowing
through the hard gluon, respectively. The Feynman rule
n+β/n+ · l in the collinear divergent pieces, coming from
the eikonal approximation, can be represented by a Wilson
line in the direction n+.

The collinear factorization of Figs. 4h–k, derived in a
similar way, is written as

(k)∑
i=(h)

Ii ≈
∫

dξ2H
(0)
S (x1, ξ2)φ

(1)
Sd̄

(x2, ξ2) , (65)

where the PS piece,

φ
(1)
Sd̄

(x2, ξ2) =
ig2CF

4m0

∫
d4l

(2π)4
u(x̄2P2)γ5

x2 �P2− � l
(x2P2 − l)2

× γβd(x2P2)
1
l2

n+β

n+ · l
(66)

×
[
δ(ξ2 − x2) − δ

(
ξ2 − x2 +

l−

P−
2

)]
,

is associated with the collinear gluon emitted from the d̄
quark. Finally, the sum of (59), (63) and (65) gives

(k)∑
i=(a)

Ii ≈
∫

dξ2H
(0)
S (x1, ξ2)φ

(1)
S (x2, ξ2) , (67)

where the PS collinear piece φ
(1)
S is defined by the O(αs)

term of the complex conjugate of (22), consistent with
the universality.

The amplitude corresponding to Fig. 1b is written as

G(0)(x1, x2) =
−g2CF

2

× u(x̄2P2)γµ(�P1 − x2 �P2 + mb)
[(P1 − x2P2)2 − m2

b ](k1 − x2P2)2

×γνb(P1 − k1)d̄(k1)γνd(x2P2), (68)

which, after inserting the Fierz identity, leads to the trivial
factorization formula,

G(0) =
∑

m=S,T

∫
dξ2H

(0)
m (x1, ξ2)φ(0)

m (x2, ξ2) . (69)

The lowest-order hard amplitudes and distribution ampli-
tudes of the PS and PT structures are written as

H
(0)
S (x1, ξ2)

=
−g2CF

2
m0

× tr[γµ(�P1 − ξ2 �P2 + mb)γνb(P1 − k1)d̄(k1)γνγ5]
[(P1 − ξ2P2)2 − m2

b ](k1 − ξ2P2)2

=
−g2CF

2η2M4
B

m0

× tr[γµ(�P1 − ξ2 �P2 + mb)γνb(P1 − k1)d̄(k1)γνγ5]
x1ξ2

2
,

H
(0)
T (x1, ξ2)

=
−g2CF

2
m0

×tr[γµ(�P1 − ξ2 �P2 + mb)γνb(P1 − k1)d̄(k1)

×γν(�n+ �n− − 1)γ5]

/([(P1 − ξ2P2)2 − m2
b ](k1 − ξ2P2)2) ,

φ
(0)
T (x2, ξ2) (70)

=
1

4m0
u(x̄2P2)γ5(�n+ �n− − 1)d(x2P2)δ(ξ2 − x2) .

The lowest-order PS distribution amplitude φ
(0)
S (x2, ξ2) is

the same as in (58).
Below we discuss the collinear divergences in the O(αs)

corrections to Fig. 1b, which are displayed in Fig. 2 with
the initial states and the final states being flipped. The de-
tails are referred to Appendix C. Figures 2a–c are factorized
straightforwardly, leading to

I(a),(b),(c) ≈
∑

m=S,T

∫
dξ2H

(0)
m (x1, ξ2)φ

(1)
ma,mb,mc(x2, ξ2) .

(71)
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The PS collinear divergent functions φ
(1)
Sa,Sb,Sc (x2, ξ2) are

the same as those shown in (60)–(62), respectively. The PT
pieces have the similar expressions with γ5 being replaced
by γ5 (�n+ �n− − 1).

For the irreducible diagrams Figs. 2d–g, a summation
of their contributions is necessary for obtaining the desired
collinear factorization,

(g)∑
i=(d)

Ii ≈
∑

m=S,T

∫
dξ2H

(0)
m (x1, ξ2)φ(1)

mu(x2, ξ2) , (72)

with the PS pieces φ
(1)
Su and φ

(1)
Sd̄

shown in (64) and (66),
respectively. The PT pieces have the similar expressions
with γ5 being replaced by γ5 (�n+ �n− − 1). The collinear
factorization of Figs. 2h–k, derived in a similar way, is writ-
ten as

(k)∑
i=(h)

Ii ≈
∑

m=S,T

∫
dξ2H

(0)
m (x1, ξ2)φ

(1)
md̄

(x2, ξ2) . (73)

Finally, the sum of (71), (72) and (73) gives

(k)∑
i=(a)

Ii ≈
∑

m=S,T

∫
dξ2H

(0)
m (x1, ξ2)φ(1)

m (x2, ξ2) , (74)

where the collinear divergent functions φ
(1)
m (x2, ξ2) are de-

fined by the O(αs) terms of the complex conjugate of (22).
The O(αs) factorization of the soft divergences from the

decay B → πlν has been performed in [1], which results in
two B meson distribution amplitudes φ

(1)
+ and φ

(1)
− [16,36]

arising from the insertion of the fourth and fifth terms of
the Fierz identity on the initial-state side:

IijIlk =
1
4

IikIlj +
1
4

(γα)ik(γα)lj

+
1
4

[
1√
2

γ5(� v − 1)
]

ik

[
1√
2

(� v − 1)γ5

]
lj

(75)

+
1
4

[
1√
2

γ5 �n+(� v + 1)
]

ik

[
1√
2

(� v + 1) �n−γ5

]
lj

+
1
4

[
1√
2

γ5 �n−(� v + 1)
]

ik

[
1√
2

(� v + 1) �n+γ5

]
lj

.

The Wilson line on the light cone can be constructed,
only if the hard scale for exclusive B meson decays is
of O(

√
Λ̄MB). This Wilson line is crucial for the gauge-

invariant definitions of the distribution amplitudes as non-
local matrix elements.

Following the similar procedures in Sect. 2, we derive
the O(αs) factorization of the decay B → πlν,

G(1) =
∑

n=+,−
φ(1)

n ⊗ H(0)
n +

∑
m=S,T

H(0)
m ⊗ φ(1)

m + H(1), (76)

where the hard amplitude H(0) receives the contributions
from Figs. 1a,b. Consequently, the factorization formula

for the two-parton twist-3 contributions is written, up to
O(αs), as

G(0) + G(1) (77)

=
∑

n=+,−
m=S,T

(φ(0)
n + φ(1)

n ) ⊗ (H(0)
nm + H(1)

nm) ⊗ (φ(0)
m + φ(1)

m ).

The definitions for the hard amplitudes H
(1)
nm and H

(0)
nm are

similar to those in (28). For example, the explicit expression
of H

(0)
+S is given by

H
(0)
+S(ξ1, ξ2)

=
−g2CF

2
√

2
m0

{
tr[γν �P2γµ(�P1 + MB) �n−γ5γνγ5]

(P2 − k1)2(k1 − x2P2 + l)2
(78)

+
tr[γµ(�P1 − ξ2 �P2 + mb)γν(�P1 + MB) �n−γ5γνγ5]

[(P1 − ξ2P2)2 − m2
b ](k1 − ξ2P2)2

}
.

4.2 All-order factorization

The all-order proof of the two-parton twist-3 factorization
theorem for the process πγ∗ → π in Sect. 3 can be general-
ized to the B → πlν decay with minor modifications. Here
we highlight only the different points of the proof. In the
case of B meson decays there is no collinear divergence as-
sociated with the initial state, since the b quark is massive,
and the light spectator d̄ quark is soft [1]. Hence, the B me-
son side is dominated by the soft divergence. The collinear
configurations associated with the final-state pion are the
same as in the process πγ∗ → π discussed in Sect. 2. The
important infrared divergences are then classified into the
soft type with a small loop momentum l and the collinear
type with l parallel to P2. We shall compare the factoriza-
tions of the soft divergences into the initial state and of
the collinear divergences into the final state.

Identify the soft gluon emitted from the outer most
vertex α on the b quark line in the O(αN+1

s ) diagrams
G(N+1). Let β denote the attachments of the other end of
the identified gluon inside the diagrams. The attachments
of the soft gluon to collinear lines along P2, to soft lines, and
to hard lines along P2−k1 all give soft divergences. The soft
lines include the b quark line, the spectator d̄ quark line,
and soft internal lines. The hard lines in exclusive B meson
decays are off-shell only by O((P2 − k1)2) ∼ O(Λ̄MB) [1].
When the identified gluon attaches the collinear lines along
P2 and the hard lines, the vertex β inside the diagrams is
mainly minus, and the vertex α on the b quark line is mainly
plus. The corresponding soft divergences are classified as
the first type, and the replacement in (37) holds for their
factorization. The above observations hint to a modified
decomposition of the tensor gαβ for the identified gluon,

gαβ =
n−αlβ
n− · l

− δα⊥δβ⊥ +
(

δα+δβ− − n−αlβ
n− · l

)

+δα−δβ+ . (79)
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The second term in (79) does not lead to soft divergences
due to the equations of motion. For the third and fourth
terms, the identified gluon attaches only the soft lines,
leading to the second type of soft divergences. Similarly, this
type of divergences is included by recovering the Lorentz
covariance of the factorization. For the identified soft gluon
emitted by the spectator d̄ quark, the decomposition in (79)
also works. The differences are that the second and third
terms give the second type of soft divergences, and that the
fourth term does not contribute because of the equations
of motion.

Since the collinear configurations for the final-state side
are the same as those in the process πγ∗ → π, (39) holds.
The difference between the factorizations of the soft diver-
gences into the initial state and of the collinear divergences
into the final state is then clear. Based on the above discus-
sion, the factorization of the O(α(N+1)

s ) diagrams G(N+1)

follows exactly the same induction procedure in Sect. 3.
In this case, the subscript n for the B meson distribution
amplitudes denotes n = +,−. We then obtain the factor-
ization formula,

G(N+1) =
∑

n=+,−
m=S,T

N+1∑
i=0

N+1−i∑
j=0

φ(i)
n ⊗ H(N+1−i−j)

nm ⊗ φ(j)
m , (80)

where the O(αN+1
s ) hard amplitude H

(N+1)
nm is infrared

finite. Equation (80) indicates that all the soft and collinear
divergences in the semileptonic decay B → πlν can be
factorized into the distribution amplitudes φ

(i)
n and φ

(j)
m

at the parton level order by order, and that the proof of
the corresponding two-parton twist-3 factorization theorem
is completed. These parton-level distribution amplitudes
serve as the infrared regulators for the derivation of the
hard amplitudes from the parton-level diagrams.

To compute the B → π transition form factor, we con-
volute the hard amplitudes with the meson distribution
amplitudes, in which the quark states are replaced by the
physical B meson and pion states. Both the twist-2 and
two-parton twist-3 contributions to the B → π form fac-
tors F+(q2) and F0(q2) in the standard definition have
been evaluated in [24]. It was observed that the latter are
of the same order of magnitude as the former, consistent
with the argument that the two-parton twist-3 contribu-
tions are not power-suppressed and are chirally enhanced.
The light-cone sum rules also give approximately equal
weights to the twist-2 and two-parton twist-3 contribu-
tions to F+ [37].

5 Conclusion

In this paper we have investigated the infrared divergences
in the process πγ∗ → π at the two-parton twist-3 level. We
summarize our observations below. There are no soft diver-
gences associated with the pion, since they cancel among
diagrams. The absence of the soft divergences is related to
the fact that a soft gluon, being huge in space-time, does
not resolve the color structure of the color-singlet pion. In

the collinear region with the loop momentum parallel to the
pion momentum, we have shown that the delicate summa-
tion of many diagrams leads to the O(αs) factorization in
the momentum, spin and color spaces. We have presented
an all-order proof of the two-parton twist-3 factorization
theorem for the process πγ∗ → π by means of the Ward
identity. This proof can also accommodate the twist-2 fac-
torization theorem presented in [1] and the twist-4 one
simply by considering the corresponding structures in the
Fierz transformation in (10).

The idea of the proof is to decompose the tensor gαβ

for the identified collinear gluon into the longitudinal and
transverse pieces shown in (36). The longitudinal (trans-
verse) piece corresponds to the configurationwithout (with)
the attachment of the identified gluon to a line along the
external momentum. The former configuration can be fac-
torized using the Ward identity as hinted by the replace-
ment in (37). The factorization of the latter configuration
can be included by demanding the Lorentz covariance of
the factorization. We emphasize again that the parton-level
distribution amplitudes, similar to the effective diagrams
drawn in SCET [26, 27], serve as the infrared regulators
for the derivation of the hard amplitudes from the parton-
level diagrams. The hard amplitudes are then derived from
the “matching procedure”. Based on the perturbative con-
struction of the distribution amplitudes, we have derived
their two-parton twist-3 definitions as non-local matrix el-
ements, where the path-ordered Wilson line appears as a
consequence of the Ward identity. Note that our technique
is simple compared to that based on the ”∆-forest” pre-
scription in [5], and explicitly gauge invariant compared to
that performed in the axial gauge [2].

We have generalized the proof to the more complicated
semileptonic decay B → πlν. The collinear factorization for
the final-state pion is the same as in the process πγ∗ → π.
The identical collinear structures in both processes justify
the concept of universality of hadron distribution ampli-
tudes in PQCD. The factorization of the soft divergences
for the initial-state B meson has been discussed in [1]. The
conceptual differences are summarized as follows. The de-
composition of the tensor gαβ for the identified soft gluon
in (36) and the replacement in (37) still work. However, the
correspondence between each term in the decomposition
and the type of soft divergences changes, as explained after
(79). The procedures of the proof then follow those for the
pion form factor. The attachments of a soft gluon to the
hard lines off-shell by O(Λ̄MB) lead to soft divergences.
These divergences, like those from the attachments of a col-
linear gluon to the hard lines in the process πγ∗ → π, are
crucial for constructing the Wilson line, that guarantees the
gauge invariance of the B meson distribution amplitudes.
This explains why the characteristic scale of exclusive B
meson decays, if factorizable, must be of O(Λ̄MB).

For a practical application to the B → πlν decay, the
parton transverse momenta kT must be taken into account
in order to smear the end-point singularities in the hard
amplitudes [24,38]. This observation implies the necessity
of proving the kT factorization theorem [17,18]. The proof
of the kT factorization theorem is basically the same as
proposed in this paper: we simply retain the dependence on
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the loop transverse momenta in hard amplitudes [19]. The
relative importance of the twist-2 and two-parton twist-3
contributions to the B → π transition form factor has been
investigated in [24], which confirms our motivation to prove
the two-parton twist-3 factorization theorem: the latter
contributions are not power-suppressed and are chirally
enhanced. In a future work the proof will be generalized
to non-leptonic B meson decays, such as B → Kπ and
ππ [39, 40]. The corresponding factorization theorem is
much more complicated, since non-leptonic decays involve
three characteristic scales: theW bosonmassMW ,MB , and
the hadronic scale of O(Λ̄), such as the parton transverse
momenta kT [41, 42].

Finally, we compare our construction of the collinear
factorization theorem in perturbation theory with that in
SCET. In the former one starts with Feynman diagrams in
fullQCD.Look for the leading region of the loopmomentum
defined by (4), in which one makes the power counting of
the Feynman diagrams. It can be found that the approx-
imate loop integral in the leading region is represented
by the diagram in Fig. 3e, which leads to the definition
of a distribution amplitude. In SCET one first constructs
the various effective degrees of freedom describing infrared
dynamics and the effective interactions, and defines their
powers. Select a specific effective operator, such as those
non-local operators in (3). Draw the diagrams based on the
effective theory, and then make the power counting. It can
be shown that the diagram in Fig. 3e scales like the selected
operator, and builds up the distribution amplitude. It is not
necessary to analyze the infrared divergences in diagrams
at this stage. That is, one arrives at Fig. 3e through ap-
proximating loop integrals in the full theory in PQCD, but
does at the operator and Lagrange level in SCET. Despite
of the different reasonings for deriving a collinear factor-
ization formula, the calculation of the Wilson coefficients is
the same. As calculating the Wilson coefficients associated
with the effective operators from the matching procedure
in SCET, the infrared divergences need to be analyzed, and
their cancellation between the full theory and the effective
theory must be demonstrated explicitly. This procedure is
in fact the same as the derivation of the hard amplitudes
(Wilson coefficients) in PQCD, where the subtraction of
the distribution amplitudes (the effective theory) from the
parton-level diagrams (the full theory) is done. Therefore,
it is legitimate to claim that the constructions of the col-
linear factorization theorem are equivalent between PQCD
and SCET [29].
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Appendix A: O(αs) corrections from Fig. 2

In this appendix we demonstrate the O(αs) factorization at
the twist-3 level of Fig. 2 in the collinear configuration. The
collinear divergences associated with the additional gluon
carrying the momentum l parallel to P1 will be grouped into
the initial-state pion distribution amplitude. It is obvious
that the twist-2 collinear factorization is performed in the
same way. Since the factorizations of Figs. 2a,c are similar
to that of Fig. 2b, we present the details only for Figs. 2b
and 2(d)-2(k).

The loop integral of Fig. 2b is given by

I(b) (A.1)

=
−eg4C2

F

2

∫
d4l

(2π)4

[
d̄(x1P1)γβ

x1 �P1− � l
(x1P1 − l)2

]
i

(I)ij

×
[
γαd(x2P2)ū(x̄2P2)γα �P2 − x1 �P1+ � l

(P2 − x1P1 + l)2
γµ

]
jl

(I)lk

×
[

x̄1 �P1+ � l
(x̄1P1 + l)2

γβu(x̄1P1)
]

k

1
l2(x2P2 − x1P1 + l)2

,

where we have introduced the identity matrices, (I)ij and
(I)lk, in order to make explicit the positions of inserting the
Fierz identity. With (10), focusing on the twist-3 structures,
we obtain

I(b) ≈ ig2CF

4m0

∫
d4l

(2π)4
d̄(x1P1)γβ

x1 �P1− � l
(x1P1 − l)2

×γ5
x̄1 �P1+ � l

(x̄1P1 + l)2
γβu(x̄1P1)

1
l2

× i
2

eg2CF m0

×tr[γαd̄(x2P2)u(x̄2P2)

γα(�P2 − x1 �P1+ � l)γµγ5]

/((P2 − x1P1 + l)2(x2P2 − x1P1 + l)2)

+
ig2CF

4m0

∫
d4l

(2π)4
d̄(x1P1)γβ

x1 �P1− � l
(x1P1 − l)2

×γ5(� n+� n−− 1)
x̄1 �P1+ � l

(x̄1P1 + l)2
γβu(x̄1P1)

1
l2

× i
2

eg2CF m0

×tr
[
γαd̄(x2P2)u(x̄2P2)γα(�P2 − x1 �P1+ � l)

×γµ(� n+� n−− 1)γ5]

/((P2 − x1P1 + l)2(x2P2 − x1P1 + l)2) , (A.2)

where the twist-2 structure (γ5 � n−)ik(� n+γ5)jl has been
dropped. In the collinear region with l ‖ P1, the depen-
dence on l− and on lT in (A.2), being subleading accord-
ing to (4), needs to be neglected. Inserting the identity∫

dξ1δ(ξ1 −x1 + l+/P+
1 ) = 1, the first factors of the above

two terms on the right-hand side of (A.2) give the collinear
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divergent piece φ
(1)
S(T)b(x1, ξ1) defined in (15). The second

factors are the corresponding hard amplitude H
(0)
S(T)(ξ1, x2)

defined in (12).
For the loop integrals associated with the two-particle

irreducible diagrams in Figs. 2d–k, the collinear factoriza-
tion is a bit complicated. It will be shown, with the Ward
identity, that the sum of Figs. 2d–g and the sum of Figs. 2h–
k lead to the factorization formulas in (17) and (19) with the
collinear divergent pieces being defined by φ

(1)
S(T)u(x1, ξ1)

and φ
(1)
S(T)d̄(x1, ξ1), respectively. Start from Fig. 2d, whose

loop integral is written as

I(d) =
ieg4

2Nc

∫
d4l

(2π)4
d̄(x1P1)γλd(x2P2)ū(x̄2P2) (A.3)

×γβ �P2 − x1 �P1+ � l
(P2 − x1P1 + l)2

γµ
x̄1 �P1+ � l

(x̄1P1 + l)2

×γαu(x̄1P1)
tr(T cT bT a)Γ cba

λβα

l2(x1P1 − x2P2)2(x1P1 − x2P2 − l)2
,

with the number of colors Nc = 3, the color matrices T a(b,c)

and the triple-gluon vertex,

Γ cba
λβα = fcba[gαβ(2l − x1P1 + x2P2)λ

+gβλ(2x1P1 − 2x2P2 − l)α

+gλα(x2P2 − x1P1 − l)β ] , (A.4)

where fabc is an antisymmetric tensor. The above color
structure can be simplified by employing the identities,

tr(T aT bT c) =
1
4

(dabc + ifabc) , dabcfabc = 0 ,

fabcfabc = 24 , (A.5)

dabc being a symmetric tensor. By means of the equations
of motion in (9), γα sandwiched between x̄1 � P1+ � l and
u(x̄1P1) must be γ+, and γλ sandwiched between d̄(x1P1)
and d(x2P2) must be γT in the collinear region with l ‖ P1.
Therefore, only the second term gβλ(−2x2P2α) contributes
at leading level, and the terms proportional to gαβ(2lT)
and to gλα are suppressed at least by O(λ/Q).

For the leading term, we have the following approxi-
mation,

2x2P2α

(x1P1 − x2P2)2(x1P1 − x2P2 − l)2
(A.6)

≈ n−α

n− · l

[
1

(x1P1 − x2P2)2
− 1

(x1P1 − x2P2 − l)2

]
,

and the eikonal propagator appears as a consequence of the
splitting of the hard gluon propagators. Equation (A.6) is
an example of the Ward identity [1]. Accordingly, (A.3) be-
comes

I(d) = eg4
∫

d4l

(2π)4
d̄(x1P1)γβd(x2P2)ū(x̄2P2)γβ

× �P2 − x1 �P1+ � l
(P2 − x1P1 + l)2

γµ

× x̄1 �P1+ � l
(x̄1P1 + l)2

γαu(x̄1P1)
1
l2

n−α

n− · l
(A.7)

×
[

1
(x1P1 − x2P2)2

− 1
(x1P1 − x2P2 − l)2

]
.

The loop integrals associated with Figs. 2e,f are given by

I(e) =
−eg4CF

4Nc

∫
d4l

(2π)4
d̄(x1P1)γαd(x2P2)ū(x̄2P2)

×γβ
x̄2 �P2+ � l

(x̄2P2 + l)2
γα �P2 − x1 �P1+ � l

(P2 − x1P1 + l)2
γµ

× x̄1 �P1+ � l
(x̄1P1 + l)2

γβu(x̄1P1)
1

l2(x1P1 − x2P2)2
,

I(f) =
eg4CF

4Nc

∫
d4l

(2π)4
d̄(x1P1)γα x2 �P2+ � l

(x2P2 + l)2

×γβd(x2P2)ū(x̄2P2)γα
�P2 − x1 �P1+ � l
(P2 − x1P1 + l)2

γµ (A.8)

× x̄1 �P1+ � l
(x̄1P1 + l)2

γβu(x̄1P1)
1

l2(x1P1 − x2P2 − l)2
,

respectively. In the collinear configuration γβ(γβ) must be
γ+(γ−), and we apply the eikonal approximations,

ū(x̄2P2)γβ
x̄2 �P2+ � l

(x̄2P2 + l)2
≈ ū(x̄2P2)

n−β

n− · l
,

x2 �P2+ � l
(x2P2 + l)2

γβ d(x2P2) ≈ n−β

n− · l
d(x2P2) . (A.9)

Combining the loop integrals in (A.8), we obtain an ex-
pression similar to (A.7) but with a different color factor,

I(e) + I(f) =
−eg4CF

4Nc

∫
d4l

(2π)4
d̄(x1P1)γαd(x2P2)ū(x̄2P2)

×γα �P2 − x1 �P1+ � l
(P2 − x1P1 + l)2

γµ

× x̄1 �P1+ � l
(x̄1P1 + l)2

γβu(x̄1P1)
1
l2

n−β

n− · l
(A.10)

×
[

1
(x1P1 − x2P2)2

− 1
(x1P1 − x2P2 − l)2

]
.

Note that there has not yet been a consistent loop mo-
mentum flow between the hard fermion propagators in the
first lines of (A.7) and (A.10) and the hard gluon propaga-
tors in the second lines. There should exist l-independent
hard fermion propagators corresponding to the first l-
independent hard gluon propagators in the second lines. To
arrive at a desired factorization form, the collinear diver-
gence in Fig. 2g has to be included. The integral of Fig. 2g
is written as

I(g) =
eg4C2

F

2

∫
d4l

(2π)4
d̄(x1P1)
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×γαd(x2P2)ū(x̄2P2)γα �P2 − x1 �P1

(P2 − x1P1)2

×γβ
�P2 − x1 �P1+ � l
(P2 − x1P1 + l)2

γµ (A.11)

× x̄1 �P1+ � l
(x̄1P1 + l)2

γβu (x̄1P1)
1

l2(x1P1 − x2P2)2
.

In the collinear region with l ‖ P1 the leading contribution
comes from γβ(γβ) = γ+(γ−), and the two internal fermion
propagators sandwiching γβ can be approximated by

�P2 − x1 �P1

(P2 − x1P1)2
γβ

�P2 − x1 �P1+ � l
(P2 − x1P1 + l)2

(A.12)

=
n−β

n− · l

[ �P2 − x1 �P1

(P2 − x1P1)2
− �P2 − x1 �P1+ � l

(P2 − x1P1 + l)2

]
.

The loop integral I(g) is then simplified into

I(g) ≈ eg4C2
F

2

∫
d4l

(2π)4
d̄(x1P1)γαd(x2P2)ū(x̄2P2) (A.13)

×γα

( �P2 − x1 �P1

(P2 − x1P1)2
− �P2 − x1 �P1+ � l

(P2 − x1P1 + l)2

)
γµ

× x̄1 �P1+ � l
(x̄1P1 + l)2

γβu (x̄1P1)
1
l2

n−β

n− · l

1
(x1P1 − x2P2)2

.

Summing (A.7), (A.10) and (A.13), we have

(g)∑
i=(d)

Ii =
eg4C2

F

2

∫
d4l

(2π)4
d̄(x1P1)γαd(x2P2)ū(x̄2P2)

×γα �P2 − x1 �P1

(P2 − x1P1)2
γµ

× x̄1 �P1+ � l
(x̄1P1 + l)2

γβu(x̄1P1)
1
l2

n−β

n− · l

1
(x1P1 − x2P2)2

− eg4C2
F

2

∫
d4l

(2π)4
d̄(x1P1)γαd(x2P2)ū(x̄2P2)

×γα �P2 − x1 �P1+ � l
(P2 − x1P1 + l)2

γµ (A.14)

× x̄1 �P1+ � l
(x̄1P1 + l)2

γβu(x̄1P1)
1
l2

n−β

n− · l

1
(x1P1 − x2P2 − l)2

,

in which both terms exhibit consistent loop momentum
flows. The first term, where the internal particles are free
from the l dependence, corresponds to the case without
the loop momentum flowing through the hard amplitude.
The second term corresponds to the case with the loop
momentum flowing through the hard amplitude. Inserting
the Fierz identity at the appropriate positions, we obtain
(17) with the collinear divergent piece being defined by
(18). The absence of the soft divergences is obvious from
the cancellation in the loop integral of Fig. 2d, in the loop
integral of Fig. 2g, and between the integrals of Figs. 2e,f
as l → 0.

The factorization formula in (19) can be derived in the
similar way. Figure 2h gives the loop integral,

I(h) =
−ieg4

2Nc

∫
d4l

(2π)4
d̄(x1P1)γλ x1 �P1− � l

(x1P1 − l)2

×γβd(x2P2)ū(x̄2P2)γα �P2 − x1 �P1

(P2 − x1P1)2
(A.15)

×γµu(x̄1P1)
tr(T cT bT a)Γ cba

λβα

l2(x1P1 − x2P2 − l)2(x1P1 − x2P2)2
,

with the triple-gluon vertex,

Γ cba
λβα = fcba[gβλ(2l − x1P1 + x2P2)α

+gαβ(2x1P1 − 2x2P2 − l)λ

+gλα(x2P2 − x1P1 − l)β ] . (A.16)

By means of the equations of motion, it is shown that only
the term gαβ(−2x2P2λ) contains the collinear divergence
based on the similar reasoning applied to Fig. 2d. Using
(A.6), (A.15) becomes

I(h) = −eg4
∫

d4l

(2π)4
d̄(x1P1)γλ x1 �P1− � l

(x1P1 − l)2

×γαd(x2P2)ū(x̄2P2)γα �P2 − x1 �P1

(P2 − x1P1)2
γµ

× u(x̄1P1)
1
l2

n−λ

n− · l
(A.17)

×
[

1
(x1P1 − x2P2)2

− 1
(x1P1 − x2P2 − l)2

]
.

The loop integrals associated with Figs. 2i,j are writ-
ten as

I(i) =
−eg4CF

4Nc

∫
d4l

(2π)4
d̄(x1P1)γβ x1 �P1− � l

(x1P1 − l)2

×γα x2 �P2− � l
(x2P2 − l)2

γβd(x2P2)ū(x̄2P2)γα
�P2 − x1 �P1

(P2 − x1P1)2

×γµu(x̄1P1)
1

l2(x1P1 − x2P2)2
,

I(j) =
eg4CF

4Nc

∫
d4l

(2π)4
d̄(x1P1)γβ x1 �P1− � l

(x1P1 − l)2

×γαd(x2P2)ū(x̄2P2)γβ
x̄2 �P2− � l

(x̄2P2 − l)2
(A.18)

×γα
�P2 − x1 �P1

(P2 − x1P1)2
γµu(x̄1P1)

1
l2(x1P1 − x2P2 − l)2

.

Employing the same eikonal approximation as in (A.9), we
derive the simplified combination,

I(i) + I(j)

≈ eg4CF

4Nc

∫
d4l

(2π)4
d̄(x1P1)
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×γβ x1 �P1− � l
(x1P1 − l)2

γαd(x2P2)ū(x̄2P2)

×γα
�P2 − x1 �P1

(P2 − x1P1)2
γµu(x̄1P1)

1
l2

n−β

n− · l
(A.19)

×
[

1
(x1P1 − x2P2)2

− 1
(x1P1 − x2P2 − l)2

]
.

Again, (A.17) and (A.19) have not yet been in the expected
factorization form, and the contribution from Fig. 2k needs
to be taken into account.

Finally, the integral associated with Fig. 2k is written as

I(k) =
−eg4C2

F

2

∫
d4l

(2π)4
d̄(x1P1)γβ x1 �P1− � l

(x1P1 − l)2
(A.20)

×γαd(x2P2)ū(x̄2P2)γα
�P2 − x1 �P1+ � l
(P2 − x1P1 + l)2

γβ

× �P2 − x1 �P1

(P2 − x1P1)2
γµu(x̄1P1)

1
l2(x1P1 − x2P2 − l)2

.

Based on the similar reasoning applied to (A.11), the lead-
ing contribution comes from γβ(γβ) = γ+(γ−), and (A.12)
holds. We then have

I(k) =
−eg4C2

F

2

∫
d4l

(2π)4
d̄(x1P1) (A.21)

×γβ x1 �P1− � l
(x1P1 − l)2

γαd(x2P2)ū(x̄2P2)

×γα

( �P2 − x1 �P1

(P2 − x1P1)2
− �P2 − x1 �P1+ � l

(P2 − x1P1 + l)2

)
γµ

×u(x̄1P1)
1
l2

n−β

n− · l

1
(x1P1 − x2P2 − l)2

.

Combining (A.17), (A.19) and (A.21), and inserting the
Fierz identity, we finally arrive at (19) with the collinear
divergent piece being defined by (20). Similarly, the soft
divergences cancel in the loop integral of Fig. 2h, in the loop
integral of Fig. 2k, and between the integrals of Figs. 2i,j
as l → 0.

Appendix B: O(αs) corrections from Fig. 4

We discuss the factorization of the initial-state collinear
divergences in the O(αs) radiative corrections to Fig. 1b,
which are shown in Fig. 4. Inserting the Fierz identity,
Fig. 1b gives only the lowest-order PS distribution ampli-
tude φ

(0)
S and the hard amplitude H

(0)
S ,

φ
(0)
S (x1, ξ1) =

1
4m0

d̄(x1P1)γ5u(x̄1P1)δ(ξ1 − x1) ,

H
(0)
S (ξ1, x2) =

i
2

eg2CF m0 (B.1)

× tr[γνd(x2P2)ū(x̄2P2)γµ(�P1 − x2 �P2)γνγ5]
(P1 − x2P2)2(ξ1P1 − x2P2)2

,

because of γν(� n+ � n− − 1)γν = 0, where the gamma
matrices γν and γν come from the gluon vertices in Fig. 1b.
The variable ξ1 denotes a momentum fraction, which could
be modified by collinear gluon exchanges.

The integral from Fig. 4b is written as

I(b) = − 1
2

eg4C2
F

∫
d4l

(2π)4
d̄(x1P1)γβ

x1 �P1− � l
(x1P1 − l)2

×γαd̄(x2P2)u(x̄2P2)

×γµ
�P1 − x2 �P2

(P1 − x2P2)2
γα x̄1 �P1+ � l

(x̄1P1 + l)2
γβu(x̄1P1)

× 1
l2(x2P2 − x1P1 + l)2

. (B.2)

Following the same procedure as for (A.1), we obtain

I(b) ≈
∫

dξ1φ
(1)
Sb (x1, ξ1)H

(0)
S (ξ1, x2) , (B.3)

where the expression of φ
(1)
Sb (x1, ξ1) has been given in (15).

The factorization of Figs. 4a,c is performed in a similar
way, leading to φ

(1)
Sa,Sc(x1, ξ1) in (14) and (16).

The loop integral associated with Fig. 4d is given by

I(d) =
ieg4

2Nc

∫
d4l

(2π)4
d̄(x1P1)γλd(x2P2)ū(x̄2P2)

×γµ
�P1 − x2 �P2

(P1 − x2P2)2
γβ x̄1 �P1+ � l

(x̄1P1 + l)2
(B.4)

×γαu(x̄1P1)
tr(T cT bT a)Γ cba

λβα

l2(x1P1 − x2P2 − l)2(x1P1 − x2P2)2
,

with the triple-gluon vertex in (A.4). The same procedure
as for (A.3) leads to

I(d) = eg4
∫

d4l

(2π)4
d̄(x1P1)γβ d(x2P2)ū(x̄2P2)γµ

× �P1 − x2 �P2

(P1 − x2P2)2
γβ

× x̄1 �P1+ � l
(x̄1P1 + l)2

γαu(x̄1P1)
1
l2

n−α

n− · l
(B.5)

×
[

1
(x1P1 − x2P2)2

− 1
(x1P1 − x2P2 − l)2

]
.

Applying the eikonal approximation in (A.9) and the
similar reasoning for Fig. 2g, the loop integrals associated
with Figs. 4e,f,g are simplified into

I(e)

=
−eg4CF

4Nc

∫
d4l

(2π)4
d̄(x1P1)γα d(x2P2)ū(x̄2P2)

×γµ
�P1 − x2 �P2+ � l
(P1 − x2P2 + l)2

γα (B.6)

× x̄1 �P1+ � l
(x̄1P1 + l)2

γβu(x̄1P1)
1
l2

n−β

n− · l

1
(x1P1 − x2P2)2

,
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I(f)

=
eg4CF

4Nc

∫
d4l

(2π)4
d̄(x1P1)γα d(x2P2)ū(x̄2P2)

×γµ
�P1 − x2 �P2

(P1 − x2P2)2
γα (B.7)

× x̄1 �P1+ � l
(x̄1P1 + l)2

γβu(x̄1P1)
1
l2

n−β

n− · l

1
(x1P1 − x2P2 − l)2

,

I(g)

=
−eg4CF

4Nc

∫
d4l

(2π)4
d̄(x1P1)γαd(x2P2)ū(x̄2P2)

×γµ

( �P1 − x2 �P2

(P1 − x2P2)2
− �P1 − x2 �P2+ � l

(P1 − x2P2 + l)2

)

×γα
x̄1 �P1+ � l

(x̄1P1 + l)2
γβu (x̄1P1)

× 1
l2

n−β

n− · l

1
(x1P1 − x2P2)2

, (B.8)

respectively. The integral I(e), in which the hard fermion
propagator contains a residual dependence on l, is cancelled
by the second term of I(g). It means that we can obtain the
desired factorization formula, only after summing Figs. 4d–
g. Inserting the Fierz identity, we have

(g)∑
i=(d)

Ii ≈
∫

dξ1φ
(1)
Su (x1, ξ1)H

(0)
S (ξ1, x2) , (B.9)

with the functions φ
(1)
Su and H

(0)
S given in (18) and (B.1),

respectively.
The integral associated with Fig. 4h is given by

I(h)

=
−ieg4

2Nc

∫
d4l

(2π)4
d̄(x1P1)γλ x1 �P1− � l

(x1P1 − l)2

×γβd(x2P2)ū(x̄2P2)γµ
�P1 − x2 �P2

(P1 − x2P2)2
(B.10)

×γαu(x̄1P1)
tr(T cT bT a)Γ cba

λβα

l2(x1P1 − x2P2 − l)2(x1P1 − x2P2)2
,

with the triple-gluon vertex in (A.16). Following the same
procedure as for Fig. 4d, the integral becomes

I(h)

= −eg4
∫

d4l

(2π)4
d̄(x1P1)γλ x1 �P1− � l

(x1P1 − l)2

×γαβd(x2P2)ū(x̄2P2)γµ
�P1 − x2 �P2

(P1 − x2P2)2
γα

×u(x̄1P1)
1
l2

n−λ

n− · l
(B.11)

×
[

1
(x1P1 − x2P2)2

− 1
(x1P1 − x2P2 − l)2

]
.

Similarly, we obtain

I(i)

=
eg4CF

4Nc

∫
d4l

(2π)4
d̄(x1P1)γα x1 �P1− � l

(x1P1 − l)2

×γββd(x2P2)ū(x̄2P2)γµ
�P1 − x2 �P2

(P1 − x2P2)2

×γβu(x̄1P1)
1
l2

n−α

n− · l

1
(x1P1 − x2P2)2

, (B.12)

I(j)

=
−eg4CF

4Nc

∫
d4l

(2π)4
d̄(x1P1)γα x1 �P1− � l

(x1P1 − l)2

×γββd(x2P2)ū(x̄2P2)γµ
�P1 − x2 �P2− � l
(P1 − x2P2 − l)2

×γβu(x̄1P1)
1
l2

n−α

n− · l

1
(x1P1 − x2P2 − l)2

, (B.13)

I(k)

=
−eg4CF

4Nc

∫
d4l

(2π)4
d̄(x1P1)γα x1 �P1− � l

(x1P1 − l)2

×γββd(x2P2)ū(x̄2P2)

×γµ

( �P1 − x2 �P2

(P1 − x2P2)2
− �P1 − x2 �P2− � l

(P1 − x2P2 − l)2

)

×γβ u(x̄1P1)
1
l2

n−α

n− · l

1
(x1P1 − x2P2 − l)2

. (B.14)

Combining (B.11)–(B.14) and inserting the Fierz identity,
we derive

(k)∑
i=(h)

Ii ≈
∫

dξ1φ
(1)
Sd̄

(x1, ξ1)H
(0)
S (ξ1, x2) , (B.15)

with the collinear piece φ
(1)
Sd̄

shown in (20).

Appendix C: O(αs) corrections to B → π�ν

In this appendix we demonstrate the collinear factorization
of Fig. 4 for the semileptonic decay B → πlν with the ini-
tial and final states being flipped. As mentioned in Sec. 4,
collinear divergences in this decay should be absorbed into
the final-state pion. Figures 4a–c can be factorized straight-
forwardly, leading to (59).

The loop integral from Fig. 4d is given by

I(d)

=
−g4

2Nc

∫
d4l

(2π)4
ū(x̄2P2)γβ x̄2 �P2+ � l

(x̄2P2 + l)2

×γα �P2− � k1

(P2 − k1)2
γµb(P1 − k1)d̄(k1) (C.1)

×γλd̄(x2P2)
tr(T cT bT a)Γ cba

λβα

l2(k1 − x2P2 + l)2(k1 − x2P2)2
,
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with the triple-gluon vertex,

Γ cba
λβα = fcba[gαβ(2l + k1 − x2P2)λ

+gβλ(k1 − x2P2 − l)α

+gλα(2x2P2 − 2k1 − l)β ] . (C.2)

The color factor is simplified according to (A.5). In the
collinear region with l parallel to P2, only the term pro-
portional to gλα contributes a collinear divergence. The
reason is as follows: due to the equations of motion for the
two partons in the final-state pion, γβ = γ− is favored,
and γλ must be γT. Because of γβ = γ−, only the plus
component of k1 in the third term on the right-hand side of
(C.2) survives. We then apply the approximation similar
to (A.6),

2k1β

(k1 − x2P2)2(k1 − x2P2 + l)2
(C.3)

≈ n+β

n+ · l

[
1

(k1 − x2P2)2
− 1

(k1 − x2P2 + l)2

]
,

and (C.1) is simplified into

I(d)

= ig4
∫

d4l

(2π)4
ū(x̄2P2)γβ x̄2 �P2+ � l

(x̄2P2 + l)2

×γα �P2− � k1

(P2 − k1)2
γµb(P1 − k1)d̄(k1)γα

×d(x2P2)
1
l2

n+β

n+ · l

×
[

1
(k1 − x2P2)2

− 1
(k1 − x2P2 + l)2

]
. (C.4)

The collinear factorization of Fig. 4e can be achieved by
applying the eikonal approximation to the b quark propa-
gator,

�P1− � k1+ � l + mb

(P1 − k1 + l)2 − m2
b

γβb(P1 − k1)

≈ 2(P1 − k1)β − γβ(�P1− � k1 − mb)
2(P1 − k1) · l

b(P1 − k1)

≈ n+β

n+ · l
b(P1 − k1) . (C.5)

The neglect of � l is due to γβ = γ+ in the collinear region.
The second term on the right-hand side of the first line van-
ishes because of (55). To derive the final expression, we have
further dropped the power-suppressed terms proportional
to k1. The integral associated with Fig. 4e then becomes

I(e)

=
−ig4CF

4Nc

∫
d4l

(2π)4
ū(x̄2P2)γβ x̄2 �P2+ � l

(x̄2P2 + l)2

×γα �P2− � k1+ � l
(P2 − k1 + l)2

γµb(P1 − k1)d̄(k1)γα

×d(x2P2)
1
l2

n+β

n+ · l

1
(k1 − x2P2)2

. (C.6)

Similarly, for the integral of Fig. 4f the eikonal approx-
imation

d̄(k1)γβ
� k1+ � l

(k1 + l)2

≈ d̄(k1)
2k1β− �k1γβ

2k1 · l
= d̄(k1)

n+β

n+ · l
, (C.7)

which stems from γβ = γ+ in the collinear region, leads to
the simplified expression

I(f)

=
ig4CF

4Nc

∫
d4l

(2π)4
ū(x̄2P2)γβ x̄2 �P2+ � l

(x̄2P2 + l)2

×γα �P2− � k1

(P2 − k1)2
γµb(P1 − k1)d̄(k1)γα

×d(x2P2)
1
l2

n+β

n+ · l

1
(k1 − x2P2 + l)2

. (C.8)

The loop integral of Fig. 4g is written as

I(g)

=
−ig4CF

4Nc

∫
d4l

(2π)4
ū(x̄2P2)γβ x̄2 �P2+ � l

(x̄2P2 + l)2

×γα �P2− � k1+ � l
(P2 − k1 + l)2

γβ
�P2− � k1

(P2 − k1)2
γµb(P1 − k1)d̄(k1)

×γα d(x2P2)
1

l2(k1 − x2P2)2
. (C.9)

In the collinear region with l ‖ P2 we apply the decompo-
sition similar to (A.12) because of γβ(γβ) = γ−(γ+),

�P2− �k1+ � l
(P2 − k1 + l)2

γβ
�P2− �k1

(P2 − k1)2
(C.10)

=
n+β

n+ · l

[ �P2− �k1

(P2 − k1)2
− �P2− �k1+ � l

(P2 − k1 + l)2

]
,

leading to

I(g)

=
−ig4CF

4Nc

∫
d4l

(2π)4
ū(x̄2P2)γβ x̄2 �P2+ � l

(x̄2P2 + l)2

×γα

( �P2− � k1

(P2 − k1)2
− �P2− � k1+ � l

(P2 − k1 + l)2

)
(C.11)

×γµb(P1 − k1)d̄(k1)γα d(x2P2)
1

l2(k1 − x2P2)2
.

The sum of (C.4), (C.6), (C.8) and (C.11) gives

(g)∑
i=(d)

Ii
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=
ig4C2

F

2

∫
d4l

(2π)4
ū(x̄2P2)γβ x̄2 �P2+ � l

(x̄2P2 + l)2

×γα �P2− � k1

(P2 − k1)2
γµb(P1 − k1)d̄(k1)γα

×d(x2P2)
1
l2

n+β

n+ · l

×
[

1
(k1 − x2P2)2

− 1
(k1 − x2P2 + l)2

]
. (C.12)

Inserting the Fierz identity, we obtain the desired collinear
factorization in (63) with the hard amplitude H

(0)
S in (58)

and the collinear piece φ
(1)
Su in (64). The above result is

consistent with that expected from the Ward identity.
For Figs. 4h–k associated with the collinear gluon emit-

ted from the outgoing d̄ quark, the collinear factorization
can be performed in an analogous way. The loop integral
from Fig. 4h is written as

I(h)

=
g4

2Nc

∫
d4l

(2π)4
ū(x̄2P2)γα �P2− �k1

(P2 − k1)2

×γµb(P1 − k1)d̄(k1)γλ x2 �P2− � l
(x2P2 − l)2

(C.13)

×γβ d(x2P2)
tr(T cT bT a)Γ cba

λβα

l2(k1 − x2P2 + l)2(k1 − x2P2)2
,

with the triple-gluon vertex,

Γ cba
λβα = fcba[gβλ(2l + k1 − x2P2)α

+gαβ(k1 − x2P2 − l)λ

+gλα(2x2P2 − 2k1 − l)β ] . (C.14)

Following the same procedure as for Fig. 4d, (C.13) re-
duces to

I(h)

= −ig4
∫

d4l

(2π)4
ū(x̄2P2)γα �P2− �k1

(P2 − k1)2

×γµb(P1 − k1)d̄(k1)γα

× x2 �P2− � l
(x2P2 − l)2

γβ d(x2P2)
1
l2

n+β

n+ · l

×
[

1
(k1 − x2P2)2

− 1
(k1 − x2P2 + l)2

]
. (C.15)

The loop integrals associated with Figs. 4i,j are given by

I(i)

=
−ig4CF

4Nc

∫
d4l

(2π)4
ū(x̄2P2)γα �P2− �k1

(P2 − k1)2

×γµb(P1 − k1)d̄(k1)γβ
�k1− � l

(k1 − l)2
γα

× x2 �P2− � l
(x2P2 − l)2

γβ d̄(x2P2)
1

l2(k1 − x2P2)2
, (C.16)

I(j)

=
ig4CF

4Nc

∫
d4l

(2π)4
ū(x̄2P2)γα �P2− �k1− � l

(P2 − k1 − l)2

×γµ
�P1− �k1− � l + mb

(P1 − k1 − l)2 − m2
b

γβb(P1 − k1) (C.17)

×d̄(k1)γα
x2 �P2− � l

(x2P2 − l)2
γβ d̄(x2P2)

1
l2(k1 − x2P2 + l)2

.

Using the approximations similar to (C.5) and (C.7), the
above expressions are simplified into

I(i)

=
ig4CF

4Nc

∫
d4l

(2π)4
ū(x̄2P2)γα �P2− �k1

(P2 − k1)2

×γµb(P1 − k1)d̄(k1)γα (C.18)

× x2 �P2− � l
(x2P2 − l)2

γβ d̄(x2P2)
1
l2

n+β

n+ · l

1
(k1 − x2P2)2

,

I(j)

=
−ig4CF

4Nc

∫
d4l

(2π)4
ū(x̄2P2)γα �P2− �k1− � l

(P2 − k1 − l)2

×γµb(P1 − k1)d̄(k1)γα (C.19)

× x2 �P2− � l
(x2P2 − l)2

γβ d̄(x2P2)
1
l2

n+β

n+ · l

1
(k1 − x2P2 + l)2

.

We then consider the loop integral from Fig. 4k, which
is given by

I(k)

=
ig4CF

4Nc

∫
d4l

(2π)4
ū(x̄2P2)γα �P2− �k1− � l

(P2 − k1 − l)2

×γβ
�P2− �k1

(P2 − k1)2
γµb(P1 − k1)d̄(k1) (C.20)

×γα
x2 �P2− � l

(x2P2 − l)2
γβ d̄(x2P2)

1
l2(k1 − x2P2 + l)2

.

With the reasoning applied to Fig. 4g, the above expres-
sion becomes

I(k)

=
−ig4CF

4Nc

∫
d4l

(2π)4
ū(x̄2P2)(I)ij

×γα

( �P2− �k1

(P2 − k1)2
− �P2− �k1− � l

(P2 − k1 − l)2

)
γµb(P1 − k1)

×d̄(k1)γα
x2 �P2− � l

(x2P2 − l)2
γβ d(x2P2)

× 1
l2

n+β

n+ · l

1
(k1 − x2P2 + l)2

. (C.21)
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The sum of Figs. 4h–k gives

(k)∑
i=(h)

Ii

=
−ig4C2

F

2

∫
d4l

(2π)4
ū(x̄2P2)γα �P2− �k1

(P2 − k1)2

×γµb(P1 − k1)d̄(k1)γα

× x2 �P2− � l
(x2P2 − l)2

γβ d(x2P2)
1
l2

n+β

n+ · l

×
[

1
(k1 − x2P2)2

− 1
(k1 − x2P2 + l)2

]
, (C.22)

from which we obtain (65).
We then discuss the factorization of the collinear diver-

gences from Fig. 2 with the initial and final states being
flipped, which represents the O(αs) corrections to Fig. 1b.
To simplify the discussion,we showonly thePSparts below.
For the irreducible diagrams associated with the collinear
gluon emitted from the outgoing u quark, the results are

I(d)

= ig4
∫

d4l

(2π)4
ū(x̄2P2)γβ x̄2 �P2+ � l

(x̄2P2 + l)2
(I)ij

×γµ
�P1 − x2 �P2+ � l + mb

(P1 − x2P2 + l)2 − m2
b

γαb(P1 − k1)d̄(k1)γα

×d(x2P2)
1
l2

n+β

n+ · l

×
[

1
(k1 − x2P2)2

− 1
(k1 − x2P2 + l)2

]
, (C.23)

I(e)

=
−ig4CF

4Nc

∫
d4l

(2π)4
ū(x̄2P2)γβ x̄2 �P2+ � l

(x̄2P2 + l)2

×γµ
�P1 − x2 �P2+ � l + mb

(P1 − x2P2 + l)2 − m2
b

γαb(P1 − k1)

×d̄(k1)γα d(x2P2)
1
l2

n+β

n+ · l

1
(k1 − x2P2)2

, (C.24)

I(f)

=
ig4CF

4Nc

∫
d4l

(2π)4
ū(x̄2P2)γβ x̄2 �P2+ � l

(x̄2P2 + l)2

×γµ
�P1 − x2 �P2+ � l + mb

(P1 − x2P2 + l)2 − m2
b

γαb(P1 − k1)

×d̄(k1)γα d(x2P2)
1
l2

n+β

n+ · l

1
(k1 − x2P2 + l)2

, (C.25)

I(g)

=
ig4C2

F

2

∫
d4l

(2π)4
ū(x̄2P2)γβ x̄2 �P2+ � l

(x̄2P2 + l)2

×γµ

( �P1 − x2 �P2 + mb

(P1 − x2P2)2 − m2
b

− �P1 − x2 �P2+ � l + mb

(P1 − x2P2 + l)2 − m2
b

)

×γαb(P1 − k1)d̄(k1)γα d(x2P2)

× 1
l2

n+β

n+ · l

1
(k1 − x2P2)2

. (C.26)

The combination of Figs. 2d–g separates into two terms,

(g)∑
i=(d)

Ii

=
ig4C2

F

2

∫
d4l

(2π)4
ū(x̄2P2)γβ x̄2 �P2+ � l

(x̄2P2 + l)2

×γµ
�P1 − x2 �P2 + mb

(P1 − x2P2)2 − m2
b

γα

×b(P1 − k1)d̄(k1)γα d(x2P2)
1
l2

n+β

n+ · l

1
(k1 − x2P2)2

− ig4C2
F

2

∫
d4l

(2π)4
ū(x̄2P2)γβ x̄2 �P2+ � l

(x̄2P2 + l)2

×γµ
�P1 − x2 �P2+ � l + mb

(P1 − x2P2 + l)2 − m2
b

γα

×b(P1 − k1)d̄(k1)γα d(x2P2)

× 1
l2

n+β

n+ · l

1
(k1 − x2P2 + l)2

, (C.27)

from which we arrive at (72) after inserting the Fierz iden-
tity.

Similarly, we obtain the simplified expressions for the
loop integrals from Figs. 2h–k,

I(h)

= −ig4
∫

d4l

(2π)4
ū(x̄2P2)γµ

�P1 − x2 �P2 + mb

(P1 − x2P2)2 − m2
b

×γαb(P1 − k1)d̄(k1)γα

× x2 �P2− � l
(x2P2 − l)2

γβ d(x2P2)
1
l2

n+β

n+ · l

×
[

1
(k1 − x2P2)2

− 1
(k1 − x2P2 + l)2

]
, (C.28)

I(i)

=
ig4CF

4Nc

∫
d4l

(2π)4
ū(x̄2P2)γµ

(�P1 − x2 �P2 + mb)
(P1 − x2P2)2 − m2

b

×γαb(P1 − k1)d̄(k1)γα (C.29)

× x2 �P2− � l
(x2P2 − l)2

γβ d(x2P2)
1
l2

n+β

n+ · l

1
(k1 − x2P2)2

,

I(j)

=
−ig4CF

4Nc

∫
d4l

(2π)4
ū(x̄2P2)γµ

�P1 − x2 �P2 + mb

(P1 − x2P2)2 − m2
b

×γαb(P1 − k1)d̄(k1)γα (C.30)

× x2 �P2− � l
(x2P2 − l)2

γβ d(x2P2)
1
l2

n+β

n+ · l

1
(k1 − x2P2 + l)2

,
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I(k)

=
−ig4C2

F

2

∫
d4l

(2π)4
ū(x̄2P2)

×γµ

( �P1 − x2 �P2 + mb

(P1 − x2P2)2 − m2
b

− �P1 − x2 �P2+ � l + mb

(P1 − x2P2 + l)2 − m2
b

)

×γαb(P1 − k1)d̄(k1)γα
x2 �P2− � l

(x2P2 − l)2
γβ d(x2P2)

× 1
l2

n+β

n+ · l

1
(k1 − x2P2 + l)2

. (C.31)

The combination of Figs. 2h–k separates into two terms:

I(k)

=
−ig4C2

F

2

∫
d4l

(2π)4
ū(x̄2P2)γµ

�P1 − x2 �P2 + mb

(P1 − x2P2)2 − m2
b

×γαb(P1 − k1)d̄(k1)γα

× x2 �P2− � l
(x2P2 − l)2

γβ d(x2P2)
1
l2

n+β

n+ · l

1
(k1 − x2P2)2

−−ig4C2
F

2

∫
d4l

(2π)4
ū(x̄2P2)γµ

�P1 − x2 �P2+ � l + mb

(P1 − x2P2 + l)2 − m2
b

×γαb(P1 − k1)d̄(k1)γα (C.32)

× x2 �P2− � l
(x2P2 − l)2

γβ d(x2P2)
1
l2

n+β

n+ · l

1
(k1 − x2P2 + l)2

,

from which we arrive at (73) after inserting the Fierz iden-
tity.
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